如圖,菱形的對角線BD,AC的長分別是6和8,求菱形的周長與面積.
考點:菱形的性質(zhì)
專題:
分析:根據(jù)菱形的對角線可以求得菱形ABCD的面積,根據(jù)菱形對角線互相垂直平分的性質(zhì),可以求得BO=OD,AO=OC,在Rt△AOB中,根據(jù)勾股定理可以求得AB的長,即可求菱形ABCD的周長.
解答:解:菱形的對角線BD,AC的長分別是6和8,
則菱形的面積為
1
2
×6×8=24,
菱形對角線互相垂直平分,
∴BO=OD=3,AO=OC=4,
∴AB=
AO2+BO2
=5,
故菱形的周長為20,
答:菱形的周長為20,面積為24.
點評:本題考查了菱形面積的計算,考查了勾股定理在直角三角形中的運用,考查了菱形各邊長相等的性質(zhì),本題中根據(jù)勾股定理計算AB的長是解題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

方程(m+2)x|m|+3mx+1=0是關(guān)于x的一元二次方程,則m的值為( 。
A、±2B、+2
C、-2D、以上都不對

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,△OBC與△PBC均為邊長為2的等邊三角形,A、D分別是OB、OC上的一點,且AB=DC=1,連接AP、DP.求證:BE=EF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

解方程組
2x-y=3
5x-2y=8

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知二次函數(shù)y=x2+mx+n的圖象經(jīng)過A(0,3),且對稱軸是直線x=2.
(1)求該函數(shù)解析式;
(2)在拋物線上找點P,使△PBC的面積是△ABC的面積的
2
3
,求出點P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(1)如圖(1)在正方形鐵皮上剪下一個半徑為r的圓形和一個半徑為R的扇形,使之恰好圍成圖(2)所示的一個圓錐,則r與R之間存在什么關(guān)系?
(2)若正方形邊長為4,請求出R、r.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(-
1
2
2+(-1)101-0.25+(
4
3
2÷(-
2
3
3÷|-8|

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

分解因式:a(a-2b)(2a-3b)-2b(2b-a)(3b-2a)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,△ABC是等邊三角形,D是BC的中點,點E在AC上,且AE=AD,求∠EDC.

查看答案和解析>>

同步練習(xí)冊答案