【題目】閱讀理解:課外興趣小組活動時,老師提出了如下問題:

如圖1,ABC中,若AB=5,AC=3,求BC邊上的中線AD的取值范圍.

小明在組內(nèi)經(jīng)過合作交流,得到了如下的解決方法:延長ADE,使得DE=AD,再連接BE(或?qū)?/span>ACD繞點D逆時針旋轉(zhuǎn)180°得到EBD),把AB、AC、2AD集中在ABE中,利用三角形的三邊關(guān)系可得2AE8,則1AD4

感悟:解題時,條件中若出現(xiàn)中點”“中線字樣,可以考慮構(gòu)造以中點為對稱中心的中心對稱圖形,把分散的已知條件和所求證的結(jié)論集中到同一個三角形中.

1)問題解決:受到(1)的啟發(fā),請你證明下面命題:如圖2,在ABC中,DBC邊上的中點,DEDF,DEAB于點E,DFAC于點F,連接EF

①求證:BE+CFEF;②若∠A=90°,探索線段BE、CF、EF之間的等量關(guān)系,并加以證明;

2)問題拓展:如圖3,在平行四邊形ABCD中,AD=2AB,FAD的中點,作CEAB,垂足E在線段AB上,聯(lián)結(jié)EF、CF,那么下列結(jié)論①∠DCF=BCD;EF=CFSBEC=2SCEF;④∠DFE=3AEF.中一定成立是 (填序號).

圖1 圖2 圖3

【答案】(1)①證明見解析;②BE2+CF2=EF2;(2)①②④.

【解析】試題分析:1可按閱讀理解中的方法構(gòu)造全等,把CFBE轉(zhuǎn)移到一個三角形中,利用三角形的三邊關(guān)系求解即可;②由∠A=90°,可得∠EBC+FCB=90°,由①中的全等得到∠C=CBG;即可得ABC+CBG =90°,EBG=90°,由此可得可得三邊之間存在勾股定理關(guān)系;2ABCD中,AD=2AB,FAD的中點,可得AF=FD=CD即可得DFC=DCF;再由ADBC,根據(jù)平行線的性質(zhì)可得DFC=FCB所以DCF=BCF,根據(jù)角平分線的定義可得DCF=BCD正確;延長EF,交CD延長線于M根據(jù)已知條件易證AEF≌△DMF,根據(jù)全等三角形的性質(zhì)可得FE=MF,AEF=M又因CEAB,可得AEC=90°,所以AEC=ECD=90°,FM=EF根據(jù)直角三角形斜邊上的中線等于斜邊的一半可得FC=FM,②正確;③由EF=FM可得SEFC=SCFM,又因MCBE即可得SBEC2SEFC,所以SBEC=2SCEF錯誤,即③錯誤;設(shè)∠FEC=x,則∠FCE=x,所以DCF=DFC=90°x根據(jù)三角形外角的性質(zhì)可得EFC=180°2x,所以EFD=90°x+180°2x=270°3x再由AEF=90°x,即可得DFE=3AEF,正確.

試題解析:

延長FDG,使得DG=DF,連接BGEG.(或把CFD繞點D逆時針旋轉(zhuǎn)180°得到BGD),

∵BD=CD,∠BDG=∠CDF,

∴△BDG≌△CDF,

∴CF=BG,

DEDF,DF=DG,

EF=EG

BEG中,BE+BGEG,即BE+CFEF

②若∠A=90°,則∠EBC+FCB=90°,

由①知∠FCD=DBG,EF=EG

∴∠EBC+DBG=90°,即∠EBG=90°,

∴在RtEBG中,BE2+BG2=EG2,

BE2+CF2=EF2;

2①∵FAD的中點,

∴AF=FD,

∵在ABCD中,AD=2AB,

∴AF=FD=CD,

∴∠DFC=∠DCF,

∵AD∥BC,

∴∠DFC=∠FCB

∴∠DCF=∠BCF,

∴∠DCF=BCD,故此選項正確;

②延長EF,交CD延長線于M

∵四邊形ABCD是平行四邊形,

∴AB∥CD,

∴∠A=∠MDF,

∵FAD中點,

∴AF=FD,

在△AEF和△DFM中,

∴△AEF≌△DMFASA),

∴FE=MF,∠AEF=∠M,

∵CE⊥AB

∴∠AEC=90°,

∴∠AEC=∠ECD=90°,

∵FM=EF

∴FC=FM,故②正確;

③∵EF=FM,

∴SEFC=SCFM

∵MCBE,

∴SBEC2SEFC

SBEC=2SCEF錯誤;

④設(shè)∠FEC=x,則∠FCE=x,

∴∠DCF=∠DFC=90°﹣x,

∴∠EFC=180°﹣2x

∴∠EFD=90°﹣x+180°﹣2x=270°﹣3x,

∵∠AEF=90°﹣x,

∴∠DFE=3∠AEF,故此選項正確.

故正確答案為:①②④.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在等邊三角形ABC中,點D,E分別在邊BCAC上,且DE∥AB,過點EEF⊥DE,交BC的延長線于點F.

1)求∠F的度數(shù);

2)若CD=2,求DF的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】閱讀理解:課外興趣小組活動時,老師提出了如下問題:

如圖1,ABC中,若AB=5AC=3,求BC邊上的中線AD的取值范圍.

小明在組內(nèi)經(jīng)過合作交流,得到了如下的解決方法:延長ADE,使得DE=AD,再連接BE(或?qū)?/span>ACD繞點D逆時針旋轉(zhuǎn)180°得到EBD),把ABAC、2AD集中在ABE中,利用三角形的三邊關(guān)系可得2AE8,則1AD4

感悟:解題時,條件中若出現(xiàn)中點”“中線字樣,可以考慮構(gòu)造以中點為對稱中心的中心對稱圖形,把分散的已知條件和所求證的結(jié)論集中到同一個三角形中.

1)問題解決:受到(1)的啟發(fā),請你證明下面命題:如圖2,在ABC中,DBC邊上的中點,DEDF,DEAB于點EDFAC于點F,連接EF

①求證:BE+CFEF②若∠A=90°,探索線段BECF、EF之間的等量關(guān)系,并加以證明;

2)問題拓展:如圖3,在平行四邊形ABCD中,AD=2AB,FAD的中點,作CEAB,垂足E在線段AB上,聯(lián)結(jié)EF、CF,那么下列結(jié)論①∠DCF=BCD;EF=CFSBEC=2SCEF;④∠DFE=3AEF.中一定成立是 (填序號).

圖1 圖2 圖3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】認真閱讀下面關(guān)于三角形內(nèi)外角平分線所夾角的探究片段,完成所提出的問題.

探究1:如圖l,在ABC中,O是∠ABC與∠ACB的平分線BOCO的交點,通過分析發(fā)現(xiàn)∠BOC=90+A,理由如下:

BOCO分別是∠ABC和∠ACB的角平分線

∴∠1=ABC, 2=ACB

∴∠l+2=(ABC+ACB)= (180-A)= 90-A

∴∠BOC=180-(1+2) =180-(90-A)=90+A

(1)探究2;如圖2中,OABC與外角ACD的平分線BOCO的交點,試分析∠BOC與∠A有怎樣的關(guān)系?請說明理由.

(2)探究3:如圖3中, O是外角∠DBC與外角∠ECB的平分線BOCO的交點,則∠BOC與∠A有怎樣的關(guān)系?(直接寫出結(jié)論)

(3)拓展:如圖4,在四邊形ABCD中,O是∠ABC與∠DCB的平分線BOCO的交點,則∠BOC與∠A+D有怎樣的關(guān)系?(直接寫出結(jié)論)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1所示,在ABCD中,AB=3cm,BC=5cm,AC⊥AB,△ACD沿射線AC的方向勻速平移得到△PNM,速度為1cm/s,同時,點Q從點C出發(fā),沿射線CB方向勻速運動,速度為1cm/s,當△PNM停止平移時,點Q也停止運動,如圖2所示,設(shè)運動時間為t(s)(0<t<4).

(1)當t為何值時,PQ∥MN?
(2)設(shè)△QMC的面積為y(cm2),求y與t之間的函數(shù)關(guān)系式;
(3)是否存在某一時刻t,使得PQ=QM,若存在,求出t的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】養(yǎng)成良好的早鍛煉習慣,對學生的學習和生活非常有益某中學為了了解七年級學生的早鍛煉情況,校政教處在七年級隨機抽取了部分學生,并對這些學生通常情況下一天的早鍛煉時間分鐘進行了調(diào)查現(xiàn)把調(diào)查結(jié)果分為A,B,C,D四組,如下表所示;同時,將調(diào)查結(jié)果繪制成下面兩幅不完整的統(tǒng)計圖.

組別

早鍛煉時間

A

B

C

D

請根據(jù)以上提供的信息,解答下列問題:

扇形統(tǒng)計圖中D所在扇形的圓心角度數(shù)為______;

補全頻數(shù)分布直方圖;

已知該校七年級共有1200名學生,請你估計這個年級學生中有多少人一天早鍛煉的時間不少于20分鐘.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,將線段AB繞點O順時針旋轉(zhuǎn)90°得到線段A′B′,那么A(﹣2,5)的對應點A′的坐標是________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1=2,CFAB,DEAB,求證:FGBC.

證明:CFAB,DEAB 已知

∴∠BED=90°BFC=90°

∴∠BED=BFC ( )

EDFC

∴∠1=BCF ( )

∵∠2=1 已知

∴∠2=BCF ( )

FGBC ( )

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖是一張平行四邊形紙片ABCD,要求利用所學知識將它變成一個菱形,甲、乙兩位同學的作法分別如下:

對于甲、乙兩人的作法,可判斷(  )

A. 甲正確,乙錯誤 B. 甲錯誤,乙正確

C. 甲、乙均正確 D. 甲、乙均錯誤

查看答案和解析>>

同步練習冊答案