分析 (1)首先證得△OBE≌△OCF(ASA),然后在Rt△CEF中,根據(jù)CE2+CF2=EF2即可解決問題.
(2)如圖1中,連接EF,在CO上截取CN=CF,只要證明△OFN≌△EFC,即可推出CE+CF=OC,再證明OC=$\frac{1}{2}$AB即可.
(3)結(jié)論:CF-CE=$\sqrt{2}$O′C,過點O′作O′H⊥AC交CF于H,只要證明△FO′H≌△EO′C,推出FH=CE,再根據(jù)等腰直角三角形性質(zhì)即可解決問題.
解答 解(1)∵在菱形ABCD中,∠ABC=90°,
∴菱形ABCD是正方形,
∴∠BOC=90°,OB=OC,AB=AC,∠OBE=∠OCF=45°,∠BCD=90°
∵∠EOF+∠BCD=180°,
∴∠EOF=90°,
∴∠BOE=∠COF,
在△OBE和△COF中,
$\left\{\begin{array}{l}{∠OBE=∠OCF}\\{OB=OC}\\{∠BOE=∠COF}\end{array}\right.$
∴△OBE≌△OCF(ASA),
∴BE=CF=$\frac{3}{2}$,
在Rt△ABC中,AB2+BC2=AC2,AC=4$\sqrt{2}$,
∴BC=4,
∴CE=$\frac{5}{2}$,
在Rt△CEF中,CE2+CF2=EF2,
∴EF=$\frac{\sqrt{34}}{2}$;
(2)證明:如圖1中,連接EF,在CO上截取CN=CF.
∵∠EOF+∠ECF=180°,
∴O、E、C、F四點共圓,
∵∠ABC=60°,四邊形ABCD是菱形,
∴∠BCD=180°-∠ABC=120°,
∴∠ACB=∠ACD=60°,
∴∠OEF=∠OCF,∠OFE=∠OCE,
∴∠OEF=∠OFE=60°,
∴△OEF是等邊三角形,
∴OF=FE,
∵CN=CF,∠FCN=60°,
∴△CFN是等邊三角形,
∴FN=FC,∠OFE=∠CFN,
∴∠OFN=∠EFC,
在△OFN和△EFC中,
$\left\{\begin{array}{l}{FO=FE}\\{∠OFN=∠EFC}\\{FN=FC}\end{array}\right.$,
∴△OFN≌△EFC(SAS),
∴ON=EC,
∴CE+CF=CN+ON=OC,
∵四邊形ABCD是菱形,∠ABC=60°,
∴∠CBO=30°,AC⊥BD,
∵在Rt△BOC中,∠BOC=90°,∠OBC=30°,
∴OC=$\frac{1}{2}$BC=$\frac{1}{2}$AB,
∴CE+CF=$\frac{1}{2}$AB.
(3)結(jié)論:CF-CE=$\sqrt{2}$O′C.
理由:如圖2,過點O′作O′H⊥AC交CF于H,
∵∠O′CH=∠O′HC=45°,
∴O′H=O′C,
∵∠FO′E=∠HO′C,
∴∠FO′H=∠CO′E,
∵∠EOF=∠ECF=90°,
∴O′、C、F、E四點共圓,
∴∠O′EF=∠O′CF=45°,
∴∠O′FE=∠O′EF=45°,
∴O′E=O′F,
在△FO′H和△EO′C中,
$\left\{\begin{array}{l}{FO′=O′E}\\{∠FO′H=∠EO′C}\\{O′H=O′C}\end{array}\right.$,
∴△FO′H≌△EO′C(SAS),
∴FH=CE,
∴CF-CE=CF-FH=CH=$\sqrt{2}$O′C.
點評 此題屬于四邊形的綜合題.考查了正方形的性質(zhì)、全等三角形的判定和性質(zhì)、勾股定理以及四點共圓等知識.注意發(fā)現(xiàn)四點共圓,添加輔助線構(gòu)造全等三角形是解此題的關(guān)鍵.
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 4 | B. | 5 | C. | 6 | D. | 7 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 乘坐高鐵對旅客的行李的檢查 | |
B. | 了解全校師生對重慶一中85周年校慶文藝表演節(jié)目的滿意程度 | |
C. | 調(diào)查初2016級15班全體同學(xué)的身高情況 | |
D. | 對新研發(fā)的新型戰(zhàn)斗機的零部件進(jìn)行檢查 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com