【題目】如圖在平面直角坐標系中反比例函數(shù)y=的圖象經(jīng)過點P(4,3)和點B(m,n)(其中0<m<4),作BA⊥x軸于點A,連接PA、OB,過P、B兩點作直線PB,且S△AOB=S△PAB
(1)求反比例函數(shù)的解析式;
(2)求點B的坐標.
科目:初中數(shù)學 來源: 題型:
【題目】已知:AB為⊙O的直徑,延長AB到點P,過點P作圓O的切線,切點為C,連接AC,且AC=CP.
(1)求∠P的度數(shù);
(2)若點D是弧AB的中點,連接CD交AB于點E,且DE·DC=20,求⊙O的面積.(π取3.14)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,某海盜船以20海里/小時的速度在某海域執(zhí)行巡航任務,當海監(jiān)船由西向東航行至A處使,測得島嶼P恰好在其正北方向,繼續(xù)向東航行1小時到達B處,測得島嶼P在其北偏西30°方向,保持航向不變又航行2小時到達C處,求出此時海監(jiān)船與島嶼P之間的距離(即PC的長,結果精確到0.1)(參考數(shù)據(jù):≈1.732,≈1.414)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為落實“綠水青山就是金山銀山”的發(fā)展理念,某市政部門招標一工程隊負責在山腳下修建一座水庫的土方施工任務.該工程隊有兩種型號的挖掘機,已知3臺型和5臺型挖掘機同時施工一小時挖土165立方米;4臺型和7臺型挖掘機同時施工一小時挖土225立方米.每臺型挖掘機一小時的施工費用為300元,每臺型挖掘機一小時的施工費用為180元.
(1)分別求每臺型, 型挖掘機一小時挖土多少立方米?
(2)若不同數(shù)量的型和型挖掘機共12臺同時施工4小時,至少完成1080立方米的挖土量,且總費用不超過12960元.問施工時有哪幾種調(diào)配方案,并指出哪種調(diào)配方案的施工費用最低,最低費用是多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】拋物線y=ax2+bx+c的頂點為D(–1,2),與x軸的一個交點A在點(–3,0)和(–2,0)之間,其部分圖象如下圖,則以下結論:①b2–4ac<0;②a+b+c<0;③c–a=2;④方程ax2+bx+c–2=0有兩個相等的實數(shù)根.其中正確結論的個數(shù)為( )
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某商場計劃購進一批甲、乙兩種玩具,已知一件甲種玩具的進價與一件乙種玩具的進價的和為40元,用90元購進甲種玩具的件數(shù)與用150元購進乙種玩具的件數(shù)相同.
(1)求每件甲種、乙種玩具的進價分別是多少元?
(2)商場計劃購進甲、乙兩種玩具共48件,其中甲種玩具的件數(shù)少于乙種玩具的件數(shù),商場決定此次進貨的總資金不超過1000元,求商場共有幾種進貨方案?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某商場購進一種每件價格為90元的新商品,在商場試銷時發(fā)現(xiàn):銷售單價元件與每天銷售量件之間滿足如圖所示的關系.
求出y與x之間的函數(shù)關系式;
寫出每天的利潤W與銷售單價x之間的函數(shù)關系式,并求出售價定為多少時,每天獲得的利潤最大?最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在菱形ABCD中,AC與BD相交于點O,AB=4,BD=4,E為AB的中點,點P為線段AC上的動點,則EP+BP的最小值為( 。
A. 4B. 2C. 2D. 8
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形ABCD是平行四邊形,分別以AB,CD為邊向外作等邊△ABE和△CDF,連接AF,CE.求證:四邊形AECF為平行四邊形.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com