【題目】數(shù)軸上A,B,C三點(diǎn)對(duì)應(yīng)的數(shù)a,b,c滿足(a+40)2+|b+10|0,B為線段AC的中點(diǎn).

(1)直接寫出AB,C對(duì)應(yīng)的數(shù)ab,c的值.

(2)如圖1,點(diǎn)D表示的數(shù)為10,點(diǎn)PQ分別從A,D同時(shí)出發(fā)勻速相向運(yùn)動(dòng),點(diǎn)P的速度為6個(gè)單位/秒,點(diǎn)Q的速度為1個(gè)單位/.當(dāng)點(diǎn)P運(yùn)動(dòng)到C后迅速以原速返回到A又折返向C點(diǎn)運(yùn)動(dòng);點(diǎn)Q運(yùn)動(dòng)至B點(diǎn)后停止運(yùn)動(dòng),同時(shí)P點(diǎn)也停止運(yùn)動(dòng).求在此運(yùn)動(dòng)過程中PQ兩點(diǎn)相遇點(diǎn)在數(shù)軸上對(duì)應(yīng)的數(shù).

(3)如圖2,M,NA,C之間兩點(diǎn)(點(diǎn)MN左邊,且它們不與A,C重合)E,F分別為ANCM的中點(diǎn),求的值.

【答案】(1)a=﹣40b=﹣10,c=20;(2)P,Q兩點(diǎn)相遇點(diǎn)在數(shù)軸上對(duì)應(yīng)的數(shù)為﹣4(3)=2.

【解析】

(1)根據(jù)(a+40)2+|b+10|0,可求出a、b的值,B為線段AC的中點(diǎn).進(jìn)而可求出c的值;

(2)分兩種情況進(jìn)行解答,一種是在A、D之間首次相遇,二是點(diǎn)PC后返回追及Q相遇,設(shè)運(yùn)動(dòng)時(shí)間,根據(jù)相遇、追及問題數(shù)量關(guān)系列方程求出時(shí)間,進(jìn)而求出相應(yīng)時(shí)所對(duì)應(yīng)的數(shù);

(3)根據(jù)線段的中點(diǎn)的意義,用中點(diǎn)線段EF表示AC后即可得出答案.

解:(1)∵(a+40)2+|b+10|0

∴a=﹣40,b=﹣10,

∵B為線段AC的中點(diǎn),

=﹣10

∴c20,

即:a=﹣40,b=﹣10c20;

(2)如圖1,設(shè)運(yùn)動(dòng)的時(shí)間為t秒,

當(dāng)PQ第一次相遇時(shí),有6t+t10(40)

解得,t,

此時(shí)相遇點(diǎn)對(duì)應(yīng)的數(shù)為10;

當(dāng)點(diǎn)PC返回追上點(diǎn)Q時(shí),有6t60t+10,

解得,t14,

此時(shí)相遇點(diǎn)對(duì)應(yīng)的數(shù)為1014=﹣4,

答:在此運(yùn)動(dòng)過程中PQ兩點(diǎn)相遇點(diǎn)在數(shù)軸上對(duì)應(yīng)的數(shù)為﹣4;

(3)如圖2∵E,F分別為ANCM的中點(diǎn),

∴AN2ENCM2MF,

∴AC2EN+2MFMN

2,

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,等邊ABC邊長(zhǎng)為4,點(diǎn)P,Q分別是AB,BC邊上的動(dòng)點(diǎn),且AP =BQ= x,PQCR,則用含x的代數(shù)式表示PQCR的面積為______;當(dāng)PCAR時(shí), x =____.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,過點(diǎn)BBECD,垂足為E,連結(jié)AE,FAE上一點(diǎn),且∠BFE=C.

1)求證: ;

2)若AB=4,BAE=30°,求AE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一食堂需要購買盒子存放食物,盒子有A、B兩種型號(hào),單個(gè)盒子的容量和價(jià)格如表格所示.現(xiàn)有15升食物需要存放且要求每個(gè)盒子都要裝滿,由于A型號(hào)盒子正做促銷活動(dòng):購買三個(gè)及三個(gè)以上可一次性每個(gè)返還現(xiàn)金1.5元,則該食堂購買盒子所需最少費(fèi)用是__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,海中有一小島P,在距小島P海里范圍內(nèi)有暗礁,一輪船自西向東航行,它在A處時(shí)測(cè)得小島P位于北偏東60°,且A、P之間的距離為32海里,若輪船繼續(xù)向正東方向航行,輪船有無觸礁危險(xiǎn)?請(qǐng)通過計(jì)算加以說明.如果有危險(xiǎn),輪船自A處開始至少沿東偏南多少度方向航行,才能安全通過這一海域?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知直線經(jīng)過點(diǎn)

1求直線的解析式;

2若直線與直線相交于點(diǎn),求點(diǎn)的坐標(biāo);

3根據(jù)圖象,直接寫出關(guān)于的不等式的解集

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖在平行四邊形ABCD中,CD2AD,BEAD,點(diǎn)FDC中點(diǎn),連接EF、BF,下列結(jié)論:①∠ABC2ABF;②EFBF;③S四邊形DEBC2SEFB;④∠CFE3DEF,其中正確的有_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某海域有A、B兩個(gè)港口,B港口在A港口北偏西30°方向上,距A港口60海里,有一艘船從A港口出發(fā),沿東北方向行駛一段距離后,到達(dá)位于B港口南偏東75°方向的C處,求:

(1)∠C=   °;

(2)此時(shí)刻船與B港口之間的距離CB的長(zhǎng)(結(jié)果保留根號(hào)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,AB=6,∠BAD的平分線與BC的延長(zhǎng)線交于點(diǎn)E、與DC交于點(diǎn)F,且點(diǎn)F為邊DC的中點(diǎn),∠ADC的平分線交AB于點(diǎn)M,交AE于點(diǎn)N,連接DE

(1) 求證:BC=CE

(2) DM=2,求DE的長(zhǎng)

查看答案和解析>>

同步練習(xí)冊(cè)答案