【題目】點(diǎn)邊上的點(diǎn),點(diǎn)是邊的中點(diǎn),平分的面積,若,,,則______.

【答案】

【解析】

如圖,由點(diǎn)F是邊BC的中點(diǎn),EF平分△ABC的面積可得點(diǎn)E與點(diǎn)A重合,過(guò)點(diǎn)CCDAB,交BA延長(zhǎng)線于D,連接AF,由∠BAC=120°可得∠DAC=60°,根據(jù)含30°角的直角三角形的性質(zhì)可求出CD、AD的長(zhǎng),可得AD=AB,即可證明AF為△CDB的中位線,根據(jù)三角形中位線的性質(zhì)即可得答案.

如圖,過(guò)點(diǎn)CCDAB,交BA延長(zhǎng)線于D,連接AF,

∵由點(diǎn)F是邊BC的中點(diǎn),EF平分△ABC的面積,

∴點(diǎn)E與點(diǎn)A重合,

∵∠BAC=120°

∴∠DAC=180°-120°=60°,

∴∠DCA=30°,

AC=4,∠CDA=90°,

AD=AC=2,CD==2,

AB=2,

AD=AB,

FBC中點(diǎn),

AF是△CDB的中位線,

AF=CD=,即EF=.

故答案為:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,添加下列一個(gè)條件,不能使△ADE∽△ACB的是( ).

A. DE∥BCB. ∠AED∠BC. D. ∠ADE∠C

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,二次函數(shù)的圖象與x軸交于A、B兩點(diǎn),B點(diǎn)的坐標(biāo)為(3,0),與y軸交于點(diǎn)C(0,-3),點(diǎn)P是直線BC下方拋物線上的一個(gè)動(dòng)點(diǎn).

(1)求二次函數(shù)解析式;

(2)連接PO,PC,并將POC沿y軸對(duì)折,得到四邊形.是否存在點(diǎn)P,使四邊形為菱形?若存在,求出此時(shí)點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;

(3)當(dāng)點(diǎn)P運(yùn)動(dòng)到什么位置時(shí),四邊形ABPC的面積最大?求出此時(shí)P點(diǎn)的坐標(biāo)和四邊形ABPC的最大面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,的直徑,點(diǎn)的中點(diǎn),的弦,且,垂足為,連接于點(diǎn),連接,

(1)求證:

(2),求的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】我市茶葉專賣店銷售某品牌茶葉,其進(jìn)價(jià)為每千克 240 元,按每千克 400 元出售,平均每周可售出 200 千克,后來(lái)經(jīng)過(guò)市場(chǎng)調(diào)查發(fā)現(xiàn),單價(jià)每降低 10 元,則平均每周的銷售量可增加 40 千克,若該專賣店銷售這種品牌茶葉要想平均每周獲利 41600 元,請(qǐng)回答:

1)每千克茶葉應(yīng)降價(jià)多少元?

2)在平均每周獲利不變的情況下,為盡可能讓利于顧客,贏得市場(chǎng),該店應(yīng)按原售價(jià)的 幾折出售?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下面是作已知三角形的高的尺規(guī)作圖過(guò)程.

已知: .

求作: 邊上的高

作法:如圖,

(1)分別以點(diǎn)和點(diǎn)為圓心,大于的長(zhǎng)為半徑作弧,兩弧相交于, 兩點(diǎn);

(2)作直線,交于點(diǎn)

(3)為圓心, 為半徑⊙O,CB的延長(zhǎng)線交于點(diǎn)D,連接AD,線段AD即為所作的高.

請(qǐng)回答;該尺規(guī)作圖的依據(jù)是___________________________________________________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形OEFG和正方形ABCD是位似圖形,點(diǎn)F的坐標(biāo)為(1,1),點(diǎn)C的坐標(biāo)為(4,2),則這兩個(gè)正方形位似中心的坐標(biāo)是______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,矩形ABCD中,AB=1,AD=2,點(diǎn)E是邊AD上的一個(gè)動(dòng)點(diǎn),把△BAE沿BE折疊,點(diǎn)A落在A′處,如果A′恰在矩形的對(duì)稱軸上,則AE的長(zhǎng)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】有這樣一個(gè)問(wèn)題:探究函數(shù)的圖象與性質(zhì).小東根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),對(duì)函數(shù)的圖象與性質(zhì)進(jìn)行了探究.下面是小東的探究過(guò)程,請(qǐng)補(bǔ)充完整:

(1)函數(shù)的自變量x的取值范圍是 ;

(2)下表是xy的幾組對(duì)應(yīng)值.

...

1

2

3

...

...

m

...

m的值;

(3)如圖,在平面直角坐標(biāo)系中,已描出了以上表中各對(duì)對(duì)應(yīng)值為坐標(biāo)的點(diǎn).根據(jù)描出的點(diǎn),畫出該函數(shù)的圖象;

(4)進(jìn)一步探究發(fā)現(xiàn),該函數(shù)圖象在第一象限內(nèi)的最低點(diǎn)的坐標(biāo)是(1,).結(jié)合函數(shù)的圖象,寫出該函數(shù)的其它性質(zhì)(寫兩條即可).

查看答案和解析>>

同步練習(xí)冊(cè)答案