【題目】如圖,平行四邊形的頂點(diǎn)在雙曲線上,頂點(diǎn)在雙曲線上,中點(diǎn)恰好落在軸上,已知,,則的值為(

A.B.C.D.

【答案】B

【解析】

連接BO,過B點(diǎn)和C點(diǎn)分別作y軸的垂線段BECD,證明BEP≌△CDPAAS),則BEP面積=CDP面積;易知BOE面積=×8=4,COD面積=|k|.由此可得BOC面積=BPO面積+CPD面積+COD面積=3+|k|=12,解k即可,注意k0

連接BO,過B點(diǎn)和C點(diǎn)分別作y軸的垂線段BECD

∴∠BEP=CDP

又∠BPE=CPD,BP=CP,

∴△BEP≌△CDPAAS).

∴△BEP面積=CDP面積.

∵點(diǎn)B在雙曲線上,

所以BOE面積=×8=4

∵點(diǎn)C在雙曲線上,且從圖象得出k0,

∴△COD面積=|k|

∴△BOC面積=BPO面積+CPD面積+COD面積=4+|k|

∵四邊形ABCO是平行四邊形,

∴平行四邊形ABCO面積=2×BOC面積=24+|k|),

23+|k|=12,

解得k=±6,

因?yàn)?/span>k0,所以k=-6

故選:B

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,半圓D的直徑AB4,線段OA7,O為原點(diǎn),點(diǎn)B在數(shù)軸的正半軸上運(yùn)動(dòng),點(diǎn)B在數(shù)軸上所表示的數(shù)為m

1)當(dāng)半圓D與數(shù)軸相切時(shí),m 

2)半圓D與數(shù)軸有兩個(gè)公共點(diǎn),設(shè)另一個(gè)公共點(diǎn)是C

直接寫出m的取值范圍是 

當(dāng)BC2時(shí),求△AOB與半圓D的公共部分的面積.

3)當(dāng)△AOB的內(nèi)心、外心與某一個(gè)頂點(diǎn)在同一條直線上時(shí),求tanAOB的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①,在矩形中,,對角線相交于點(diǎn),動(dòng)點(diǎn)由點(diǎn)出發(fā),沿向點(diǎn)運(yùn)動(dòng).設(shè)點(diǎn)的運(yùn)動(dòng)路程為的面積為,的函數(shù)關(guān)系圖象如圖②所示,則邊的長為( )

A. 3B. 4C. 5D. 6

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知P(-5,m)和Q(3,m)是二次函數(shù)y=2x2+bx+1圖象上的兩點(diǎn).

(1)求b的值;

(2)將二次函數(shù)y=2x2+bx+1的圖象進(jìn)行一次平移,使圖象經(jīng)過原點(diǎn).(寫出一種即可)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知二次函數(shù)y=ax2+2x+c的圖象經(jīng)過點(diǎn)C(0,3),與x軸分別交于點(diǎn)A,點(diǎn)B(3,0).點(diǎn)P是直線BC上方的拋物線上一動(dòng)點(diǎn).

(1)求二次函數(shù)y=ax2+2x+c的表達(dá)式;

(2)連接PO,PC,并把POC沿y軸翻折,得到四邊形POP′C.若四邊形POP′C為菱形,請求出此時(shí)點(diǎn)P的坐標(biāo);

(3)當(dāng)點(diǎn)P運(yùn)動(dòng)到什么位置時(shí),四邊形ACPB的面積最大?求出此時(shí)P點(diǎn)的坐標(biāo)和四邊形ACPB的最大面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】萬州三中初中數(shù)學(xué)組深知人生最具好奇心和幻想力、創(chuàng)造力的時(shí)期是中學(xué)時(shí)代,經(jīng)研究,為我校每一個(gè)初中生推薦一本中學(xué)生素質(zhì)數(shù)育必讀書《數(shù)學(xué)的奧秘》,這本書就是專門為好奇的中學(xué)生準(zhǔn)備的.這本書不但給于我們知識,解答生活中的疑惑,更重要的是培養(yǎng)我們細(xì)致觀察、認(rèn)真思考、勤于動(dòng)手的能力.經(jīng)過一學(xué)期的閱讀和學(xué)習(xí),為了了解學(xué)生閱讀效果,我們從初一、初二的學(xué)生中隨機(jī)各選20名,對《數(shù)學(xué)的奧秘》此書閱讀效果做測試(此次測試滿分:100分).通過測試,我們收集到20名學(xué)生得分的數(shù)據(jù)如下:

初一

96

100

89

95

62

75

93

86

86

93

95

95

88

94

95

68

92

80

78

90

初二

100

98

96

95

94

92

92

92

92

92

86

84

83

82

78

78

74

64

60

92

通過整理,兩組數(shù)據(jù)的平均數(shù)、中位數(shù)、眾數(shù)和方差如表:

年級

平均數(shù)

中位數(shù)

眾數(shù)

方差

初一

87.5

91

m

96.15

初二

86.2

n

92

113.06

某同學(xué)將初一學(xué)生得分按分?jǐn)?shù)段(,),繪制成頻數(shù)分布直方圖,初二同學(xué)得分繪制成扇形統(tǒng)計(jì)圖,如圖(均不完整),初一學(xué)生得分頻數(shù)分布直方圖 初二學(xué)生得分扇形統(tǒng)計(jì)圖(注:x表示學(xué)生分?jǐn)?shù))

請完成下列問題:

1)初一學(xué)生得分的眾數(shù)________;初二學(xué)生得分的中位數(shù)________

2)補(bǔ)全頻數(shù)分布直方圖;扇形統(tǒng)計(jì)圖中,所對用的圓心角為________度;

3)經(jīng)過分析________學(xué)生得分相對穩(wěn)定(填初一初二);

4)你認(rèn)為哪個(gè)年級閱讀效果更好,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD的頂點(diǎn)A和對稱中心在反比例函數(shù)yk≠0,x0)的圖象上,若矩形ABCD的面積為16,則k的值為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示的是太原市某公園水上滑梯的側(cè)面圖,其中段可看成是雙曲線的一部分,其中,矩形中有一個(gè)向上攀爬的梯子,米,入口,且米,出口點(diǎn)距水面的距離米,則點(diǎn)之間的水平距離的長度為(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形ABCD中,點(diǎn)PAD延長線上一點(diǎn),連接AC、CP,F(xiàn)AB邊上一點(diǎn),滿足CFCP,過點(diǎn)BBMCF,分別交AC、CF于點(diǎn)M、N

(1)若AC=AP,AC=4,求ACP的面積;

(2)若BC=MC,證明:CP﹣BM=2FN.

查看答案和解析>>

同步練習(xí)冊答案