【題目】在Rt△ABC中,∠ACB=90°,AC=8,BC=6,點(diǎn)D是以點(diǎn)A為圓心4為半徑的圓上一點(diǎn),連接BD,點(diǎn)M為BD中點(diǎn),線(xiàn)段CM長(zhǎng)度的最大值為 .
【答案】7
【解析】解:作AB的中點(diǎn)E,連接EM、CE.
在直角△ABC中,AB= = =10,
∵E是直角△ABC斜邊AB上的中點(diǎn),
∴CE= AB=5.
∵M(jìn)是BD的中點(diǎn),E是AB的中點(diǎn),
∴ME= AD=2.
∴在△CEM中,5﹣2≤CM≤5+2,即2≤CM≤7.
∴最大值為7,
所以答案是:7.
【考點(diǎn)精析】利用直角三角形斜邊上的中線(xiàn)和三角形中位線(xiàn)定理對(duì)題目進(jìn)行判斷即可得到答案,需要熟知直角三角形斜邊上的中線(xiàn)等于斜邊的一半;連接三角形兩邊中點(diǎn)的線(xiàn)段叫做三角形的中位線(xiàn);三角形中位線(xiàn)定理:三角形的中位線(xiàn)平行于三角形的第三邊,且等于第三邊的一半.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某工廠(chǎng)計(jì)劃生產(chǎn)A,B兩種產(chǎn)品共10件,其生產(chǎn)成本和利潤(rùn)如下表:
A種產(chǎn)品 | B種產(chǎn)品 | |
成本(萬(wàn)元/件) | 2 | 5 |
利潤(rùn)(萬(wàn)元/件) | 1 | 3 |
(1)若工廠(chǎng)計(jì)劃獲利14萬(wàn)元,問(wèn)A,B兩種產(chǎn)品應(yīng)分別生產(chǎn)多少件?
(2)若工廠(chǎng)計(jì)劃投入資金不多于44萬(wàn)元,且獲利多于14萬(wàn)元,問(wèn)工廠(chǎng)有哪幾種生產(chǎn)方案?
(3)在(2)的條件下,哪種生產(chǎn)方案獲利最大?并求出最大利潤(rùn).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB=AC,D為邊BC上一點(diǎn),以AB、BD為鄰邊作ABDE,連接AD、EC.
(1)試說(shuō)明:△ADC≌△ECD;
(2)若BD=CD,試說(shuō)明:四邊形ADCE是矩形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小明和小紅學(xué)習(xí)了用圖形面積研究整式乘法的方法后,分別進(jìn)行了如下數(shù)學(xué)探究:把一根鐵絲截成兩段,
探究1:小明截成了兩根長(zhǎng)度不同的鐵絲,并用兩根不同長(zhǎng)度的鐵絲分別圍成兩個(gè)正方形,已知兩正方形的邊長(zhǎng)和為20cm,它們的面積的差為40cm2,則這兩個(gè)正方形的邊長(zhǎng)差為 .
探究2:小紅截成了兩根長(zhǎng)度相同的鐵絲,并用兩根同樣長(zhǎng)的鐵絲分別圍成一個(gè)長(zhǎng)方形與一個(gè)正方形,若長(zhǎng)方形的長(zhǎng)為xm,寬為ym,
(1)用含x、y的代數(shù)式表示正方形的邊長(zhǎng)為 ;
(2)設(shè)長(zhǎng)方形的長(zhǎng)大于寬,比較正方形與長(zhǎng)方形面積哪個(gè)大,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線(xiàn)AB,CD 相交于點(diǎn)O,∠AOD=3∠BOD+20°.
(1)求∠BOD的度數(shù);
(2)以O為端點(diǎn)引射線(xiàn)OE,OF ,射線(xiàn)OE平分∠BOD,且∠EOF= 90°,求∠BOF的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,∠CAB=∠DAB下列條件中不能使△ABC≌△ABD的是( )
A. ∠C=∠D B. ∠ABC=∠ABD C. AC=AD D. BC=BD
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知OA⊥OB,∠AOD=∠BOC由此判定OC⊥OD,下面是推理過(guò)程,請(qǐng)?zhí)羁?/span>.
解:∵OA⊥OB(已知)
所以_____=90°(________)
因?yàn)?/span>_____=∠AOD-∠AOC,____=∠BOC-∠AOC,∠AOD=∠BOC,
所以______=_____(等量代換)
所以______=90°
所以OC⊥OD.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一大門(mén)欄桿的平面示意圖如圖所示,BA垂直地面AE于點(diǎn)A,CD平行于地面AE,若∠BCD=150°,求∠ABC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小紅玩抽卡片和旋轉(zhuǎn)盤(pán)游戲,有兩張正面分別標(biāo)有數(shù)字1,﹣2的不透明卡片,背面完全相同;轉(zhuǎn)盤(pán)被平均分成3個(gè)相等的扇形,并分別標(biāo)有數(shù)字﹣1,3,4(如圖所示),小云把卡片背面朝上洗勻后從中隨機(jī)抽出一張,記下卡片上的數(shù)字;然后轉(zhuǎn)動(dòng)轉(zhuǎn)盤(pán),轉(zhuǎn)盤(pán)停止后,記下指針?biāo)趨^(qū)域的數(shù)字(若指針在分格線(xiàn)上,則重轉(zhuǎn)一次,直到指針指向某一區(qū)域?yàn)橹梗?qǐng)用列表或樹(shù)狀圖的方法(只選其中一種)求出兩個(gè)數(shù)字之積為負(fù)數(shù)的概率.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com