如圖,▱ABCD的周長(zhǎng)為36,對(duì)角線(xiàn)AC,BD相交于點(diǎn)O.點(diǎn)E是CD的中點(diǎn),BD=12,則△DOE的周長(zhǎng)為 .
考點(diǎn):
三角形中位線(xiàn)定理;平行四邊形的性質(zhì).
分析:
根據(jù)平行四邊形的對(duì)邊相等和對(duì)角線(xiàn)互相平分可得,OB=OD,又因?yàn)镋點(diǎn)是CD的中點(diǎn),可得OE是△BCD的中位線(xiàn),可得OE=BC,所以易求△DOE的周長(zhǎng).
解答:
解:∵▱ABCD的周長(zhǎng)為36,
∴2(BC+CD)=36,則BC+CD=18.
∵四邊形ABCD是平行四邊形,對(duì)角線(xiàn)AC,BD相交于點(diǎn)O,BD=12,
∴OD=OB=BD=6.
又∵點(diǎn)E是CD的中點(diǎn),
∴OE是△BCD的中位線(xiàn),DE=CD,
∴OE=BC,
∴△DOE的周長(zhǎng)=OD+OE+DE=BD+(BC+CD)=6+9=15,即△DOE的周長(zhǎng)為15.
故答案是:15.
點(diǎn)評(píng):
本題考查了三角形中位線(xiàn)定理、平行四邊形的性質(zhì).解題時(shí),利用了“平行四邊形對(duì)角線(xiàn)互相平分”、“平行四邊形的對(duì)邊相等”的性質(zhì).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源:2013年初中畢業(yè)升學(xué)考試(遼寧大連卷)數(shù)學(xué)(解析版) 題型:解答題
如圖,▱ABCD中,點(diǎn)E、F分別在AD、BC上,且AE=CF.求證:BE=DF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源:2013年初中畢業(yè)升學(xué)考試(新疆區(qū)、兵團(tuán)卷)數(shù)學(xué)(解析版) 題型:解答題
如圖,▱ABCD中,點(diǎn)O是AC與BD的交點(diǎn),過(guò)點(diǎn)O的直線(xiàn)與BA、DC的延
長(zhǎng)線(xiàn)分別交于點(diǎn)E、F.
(1)求證:△AOE≌△COF;
(2)請(qǐng)連接EC、AF,則EF與AC滿(mǎn)足什么條件時(shí),四邊形AECF是矩形,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源:2014屆貴州省畢節(jié)地區(qū)金沙縣八年級(jí)上學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:解答題
如圖,▱ABCD的兩條對(duì)角線(xiàn)AC和BD相交于點(diǎn)O,并且BD=4,AC=6,BC=.
(1)AC與BD有什么位置關(guān)系?為什么?
(2)四邊形ABCD是菱形嗎?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源:2013年初中畢業(yè)升學(xué)考試(福建漳州卷)數(shù)學(xué)(解析版) 題型:解答題
如圖,▱ABCD中,E,F(xiàn)是對(duì)角線(xiàn)BD上兩點(diǎn),且BE=DF.
(1)圖中共有 對(duì)全等三角形;
(2)請(qǐng)寫(xiě)出其中一對(duì)全等三角形: ≌ ,并加以證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源:2013年初中畢業(yè)升學(xué)考試(湖北十堰卷)數(shù)學(xué)(解析版) 題型:填空題
如圖,▱ABCD中,∠ABC=60°,E、F分別在CD和BC的延長(zhǎng)線(xiàn)上,AE∥BD,EF⊥BC,EF=,則AB的長(zhǎng)是 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com