【題目】某市區(qū)自2014年1月起,居民生活用水開始實(shí)行階梯式計(jì)量水價(jià),該階梯式計(jì)量水價(jià)分為三級(jí)(如下表所示):
月用水量(噸) | 水價(jià)(元/噸) |
第一級(jí) 20噸以下(含20噸) | 1.6 |
第二級(jí) 20噸﹣30噸(含30噸) | 2.4 |
第三級(jí) 30噸以上 | 3.2 |
例:某用戶的月用水量為32噸,按三級(jí)計(jì)量應(yīng)繳水費(fèi)為:
1.6×20+2.4×10+3.2×2=62.4(元)
(1)如果甲用戶的月用水量為12噸,則甲需繳的水費(fèi)為 元;
(2)如果乙用戶繳的水費(fèi)為39.2元,則乙月用水量 噸;
(3)如果丙用戶的月用水量為a噸,則丙用戶該月應(yīng)繳水費(fèi)多少元?(用含a的代數(shù)式表示,并化簡(jiǎn))
【答案】(1)19.2;(2)23;(3)當(dāng)0<a≤20時(shí),丙用戶該月應(yīng)繳交水費(fèi)1.6a元;當(dāng)20<a≤30時(shí),1.6×20+2.4(a-20)=2.4a-16;丙用戶該月應(yīng)繳水費(fèi)2.4a-16;當(dāng)a>30時(shí),1.6×20+2.4×10+3.2(a-30)=3.2a-40;丙用戶該月應(yīng)繳水費(fèi)3.2a-40.
【解析】
利用分類討論思想和代數(shù)式的應(yīng)用來解答本題.
(1)甲用戶的月用水量為12噸,則甲需繳交的水費(fèi)為12×1.6=元;
(2)如果乙用戶繳交的水費(fèi)為39.2元,則乙月用水量39.2÷2.4=;
(3)當(dāng)0<20時(shí),丙應(yīng)繳交水費(fèi)=(元);
當(dāng)20<時(shí),
丙應(yīng)繳交水費(fèi)=(元);
當(dāng)>30時(shí),
丙應(yīng)繳交水費(fèi)=(元).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,數(shù)軸上有三個(gè)點(diǎn)A、B、C,表示的數(shù)分別是﹣4、﹣2、3,請(qǐng)回答:
(1)若使C、B兩點(diǎn)的距離與A、B兩點(diǎn)的距離相等,則需將點(diǎn)C向左移動(dòng) 個(gè)單位;
(2)若移動(dòng)A、B、C三點(diǎn)中的兩個(gè)點(diǎn),使三個(gè)點(diǎn)表示的數(shù)相同,移動(dòng)方法有 種,其中移動(dòng)所走的距離和最小的是 個(gè)單位;
(3)若在原點(diǎn)處有一只小青蛙,一步跳1個(gè)單位長(zhǎng).小青蛙第1次先向左跳1步,第2次再向右跳3步,然后第3次再向左跳5步,第4次再向右跳7步,…,按此規(guī)律繼續(xù)跳下去,那么跳第100次時(shí),應(yīng)跳 步,落腳點(diǎn)表示的數(shù)是 ;
(4)若有兩只小青蛙A、B,它們?cè)跀?shù)軸上的點(diǎn)表示的數(shù)分別為整數(shù)x、y,且|x﹣2|+|y+3|=2,求兩只小青蛙A、B之間的距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形紙片ABCD中,G、F分別為AD、BC的中點(diǎn),將紙片折疊,使D點(diǎn)落在GF上,得到△HAE,再過H點(diǎn)折疊紙片,使B點(diǎn)落在直線AB上,折痕為PQ.連接AF、EF,已知HE=HF,下列結(jié)論:①△MEH為等邊三角形;②AE⊥EF;③△PHE∽△HAE;④ ,其中正確的結(jié)論是( 。
A. ①②③ B. ①②④ C. ①③④ D. ①②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】問題情境:如圖1,在等邊△ABC中,點(diǎn)P在△ABC內(nèi),且PA=3,PB=5,PC=4,求∠APC的度數(shù)?
小明在解決這個(gè)問題時(shí),想到了以下思路:如圖2,把△APC繞著點(diǎn)A順時(shí)針旋轉(zhuǎn),使點(diǎn)C旋轉(zhuǎn)到點(diǎn)B,得到△ADB,連結(jié)DP.
請(qǐng)你在小明的思路提示下,求出∠APC的度數(shù).
思路應(yīng)用:如圖3,△ABC為等邊三角形,點(diǎn)P在△ABC外,且PA=6,PC=8,∠APC=30°,求PB的長(zhǎng);
思路拓展:如圖4,矩形ABCD中,AB=BC,P為矩形ABCD內(nèi)一點(diǎn),PA:PB:PC=2:1:2,則∠APB= °.(直接填空)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,D、E是BC邊上的點(diǎn),BD:DE:EC=3:2:1,M在AC邊上,CM:MA=1:2,BM交AD,AE于H,G,則BH:HG:GM等于( )
A. 4:2:1 B. 5:3:1 C. 25:12:5 D. 51:24:10
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明得到育才學(xué)校數(shù)學(xué)課外興趣小組成員的年齡情況統(tǒng)計(jì)如下表:
年齡(歲) | 13 | 14 | 15 | 16 |
人數(shù)(人) | 5 | 15 | x | 10-x |
那么對(duì)于不同x的值,則下列關(guān)于年齡的統(tǒng)計(jì)量不會(huì)發(fā)生變化的是( )
A. 眾數(shù),中位數(shù)B. 中位數(shù),方差C. 平均數(shù),中位數(shù)D. 平均數(shù),方差
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(2017·吉林)如圖①,一個(gè)正方體鐵塊放置在圓柱形水槽內(nèi),現(xiàn)以一定的速度往水槽中注水,28s時(shí)注滿水槽.水槽內(nèi)水面的高度y(cm)與注水時(shí)間x(s)之間的函數(shù)圖象如圖②所示.
(1)正方體的棱長(zhǎng)為 cm;
(2)求線段AB對(duì)應(yīng)的函數(shù)解析式,并寫出自變量x的取值范圍;
(3)如果將正方體鐵塊取出,又經(jīng)過t(s)恰好將此水槽注滿,直接寫出t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】
如圖,在正方形ABCD中,點(diǎn)E、F分別在CD、BC上,且BF=CE,連接BE、AF相交于點(diǎn)G,則下列結(jié)論不正確的是( )
A.BE=AF B.∠DAF=∠BEC C.∠AFB+∠BEC=90° D.AG⊥BE
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某公司為了了解員工每人所創(chuàng)年利潤(rùn)情況,公司從各部抽取部分員工對(duì)每年所創(chuàng)利潤(rùn)進(jìn)行統(tǒng)計(jì),并繪制如圖1,圖2統(tǒng)計(jì)圖.
(1)將圖2補(bǔ)充完整;
(2)本次共抽取員工 人,每人所創(chuàng)年利潤(rùn)的眾數(shù)是 萬元,平均數(shù)是 萬元,中位數(shù)是 萬元;
(3)若每人創(chuàng)造年利潤(rùn)10萬元及(含10萬元)以上為優(yōu)秀員工,在公司1200員工中有多少可以評(píng)為優(yōu)秀員工?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com