【題目】如圖,已知△ABE與△CDE都是等腰直角三角形,∠AEB=∠DEC=90°,連接AD,AC,BC,BD,若AD=AC=AB,則下列結(jié)論:①AE垂直平分CD,②AC平分∠BAD,③△ABD是等邊三角形,④∠BCD的度數(shù)為150°,其中正確的個(gè)數(shù)是( )
A.1B.2C.3D.4
【答案】D
【解析】
首先證明△AEC≌△BED,得到AC=BD=AB=AD,得到△ABD是等邊三角形,③正確;根據(jù) ABE與 CDE都是等腰直角三角形,得到∠CAB=∠CAD=30°∠CAE=∠EAD=15°得到①②正確; ABC,CAD為等腰三角形,頂角都為30°,得到∠ACB=∠ABC=75°,∠ACD=∠ADC=75°,得出∠BCD的度數(shù)為150°④正確
解:∵ ABE與 CDE都是等腰直角三角形
∴AE=BE, DE=CE
∵∠AEB=∠DEC=90°
∴∠AEC=∠DEB
∴△AEC≌△BED
∴AC=BD
∵AD=AC=AB
∴AD=BD=AB
∴② ABD是等邊三角形正確
∴∠ABD=∠BAD=∠ADB=60°
∵ ABE與 CDE都是等腰直角三角形
∴∠EAB=∠ABE=45°
∴∠CAB=30°,∠CAE=∠EAD=15°
∴AE為∠CAD的角平分線
∵ ABD為等腰三角形
∴①AE垂直平分CD正確
∴∠CAD=30°
∴②AC平分∠BAD正確
∵ ABC為等腰三角形,頂角∠BAC=30°
∴∠ACB=∠ABC=75°
同理∠ACD=∠ADC=75°
∴④∠BCD的度數(shù)為150°正確.
故選D
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,分別以直角三角形的三邊為邊長向外作正方形,然后分別以三個(gè)正方形的中心為圓心,正方形邊長的一半為半徑作圓,記三個(gè)圓的面積分別為,,,則,,之間的關(guān)系是( )
A.B.C.D.無法確定
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校數(shù)學(xué)興趣小組進(jìn)行戶外興趣活動:測量河中橋墩露出水面部分AB的高度.如圖所示,在點(diǎn)C處測得∠BCA=45°.在坡比為i=1:3,高度DE=15米的小山坡頂E處測得橋墩頂部B的仰角為20°,則橋墩露出水面部分AB的高度約為(精確到1米,參考數(shù)據(jù):sin20°≈0.34,cos20°≈0.94,tan20°≈0.36)( 。
A. 34 B. 48 C. 49 D. 64
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為使中華傳統(tǒng)文化教育更具有實(shí)效性,軍寧中學(xué)開展以“我最喜愛的傳統(tǒng)文化種類”為主題的調(diào)查活動,圍繞“在詩詞、國畫、對聯(lián)、書法、戲曲五種傳統(tǒng)文化中,你最喜愛哪一種?(必選且只選一種)”的問題,在全校范圍內(nèi)隨機(jī)抽取部分學(xué)生進(jìn)行問卷調(diào)查,將調(diào)查結(jié)果整理后繪制成如圖所示的不完整的統(tǒng)計(jì)圖,請你根據(jù)圖中提供的信息回答下列問題:
(1)本次調(diào)查共抽取了多少名學(xué)生?
(2)通過計(jì)算補(bǔ)全條形統(tǒng)計(jì)圖;
(3)若軍寧中學(xué)共有960名學(xué)生,請你估計(jì)該中學(xué)最喜愛國畫的學(xué)生有多少名?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】夷陵區(qū)園林處為了對一段公路進(jìn)行綠化,計(jì)劃購買A、B兩種風(fēng)景樹,已知若用8000元買A種樹要比買B種樹多買20棵,A、B兩種樹的相關(guān)信息如下表:
項(xiàng)目品種 | 單價(jià)(元/棵) | 成活率 |
A | m | 91% |
B | 100 | 97% |
(1)求表中m的值;
(2)預(yù)計(jì)對這段公路的綠化需購1000棵這樣的風(fēng)景樹.若希望這批樹的成活率不低于94%,且使購樹的總費(fèi)用最低,應(yīng)選購A、B兩種樹各多少棵?最低費(fèi)用為多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,從A地到B地的公路需要經(jīng)過C地,根據(jù)規(guī)劃,將在A,B兩地之間修建一條筆直的公路.已知AC=10千米,∠CAB=34°,∠CBA=45°,求改直后公路AB的長(結(jié)果精確到0.1千米)
(參考數(shù)據(jù):sin34°≈0.559,cos34°≈0.829,tan34°≈0.675)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,AD∥BC,E為CD的中點(diǎn),連接AE、BE,BE⊥AE,延長AE交BC的延長線于點(diǎn)F. 已知AD=2cm,BC=5cm.
(1)求證:FC=AD;
(2)求AB的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y=﹣2x+m的圖象與x軸y軸分別交于點(diǎn)A,B,與正比例函數(shù)y=x的圖象交于點(diǎn)P(2,n)
(1)求點(diǎn)A的坐標(biāo);
(2)求△POB的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,AD是高,AE、BF是角平分線,它們相交于點(diǎn)O,∠CAB=500,∠C=600,求∠DAE和∠BOA的度數(shù)。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com