圖1的長(zhǎng)方形ABCD中,E點(diǎn)在AD上,且BE=2AE.分別以BE、CE為折線,將A、D向BC的方向折過去,圖2為對(duì)折后A、B、C、D、E五點(diǎn)均在同一平面上的位置圖.若圖2中,∠AED=15°,則∠BCE的度數(shù)為何?________.

37.5°
分析:由題意得:∵BE=2AE=2A′E,∠A=∠A′=90°,即可得△ABE、△A′BE皆為30°、60°、90° 的三角形,然后可求得∠AED′的度數(shù),又由∠AED=15°,即可求得∠DED′的度數(shù),繼而求得∠BCE=∠2的度數(shù).
解答:解:根據(jù)題意得:∵BE=2AE=2A′E,∠A=∠A′=90°,
∴△ABE、△A′BE皆為30°、60°、90° 的三角形,
∴∠1=∠AEB=60°,
∴∠AED′=180°-∠1-∠AEB=180°-60°-60°=60°,
∴∠DED′=∠AED+∠AED′=15°+60°=75°,
∴∠2=∠DED′=37.5°,
∵A′D′∥BC,
∴∠BCE=∠2=37.5°.
故答案為:37.5°.
點(diǎn)評(píng):此題考查了翻折變換的性質(zhì)、矩形的性質(zhì)以及含30°角的直角三角形的性質(zhì).此題難度適中,注意數(shù)形結(jié)合思想的應(yīng)用,注意折疊中的對(duì)應(yīng)關(guān)系.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2012•臺(tái)灣)圖1的長(zhǎng)方形ABCD中,E點(diǎn)在AD上,且BE=2AE.今分別以BE、CE為折線,將A、D向BC的方向折過去,圖2為對(duì)折后A、B、C、D、E五點(diǎn)均在同一平面上的位置圖.若圖2中,∠AED=15°,則∠BCE的度數(shù)為何?( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

圖1的長(zhǎng)方形ABCD中,E點(diǎn)在AD上,且BE=2AE.分別以BE、CE為折線,將A、D向BC的方向折過去,圖2為對(duì)折后A、B、C、D、E五點(diǎn)均在同一平面上的位置圖.若圖2中,∠AED=15°,則∠BCE的度數(shù)為何?
37.5°
37.5°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

圖1的長(zhǎng)方形ABCD中,E點(diǎn)在AD上,且BE=2AE.今分別以BE、CE為折線,將A、D向BC的方向折過去,圖2為對(duì)折后A、B、C、D、E五點(diǎn)均在同一平面上的位置圖.若圖2中,∠AED=15°,則∠BCE的度數(shù)為何?(  )

 

A.

30

B.

32.5

C.

35

D.

37.5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012年臺(tái)灣省中考數(shù)學(xué)試卷(解析版) 題型:選擇題

圖1的長(zhǎng)方形ABCD中,E點(diǎn)在AD上,且BE=2AE.今分別以BE、CE為折線,將A、D向BC的方向折過去,圖2為對(duì)折后A、B、C、D、E五點(diǎn)均在同一平面上的位置圖.若圖2中,∠AED=15°,則∠BCE的度數(shù)為何?( )

A.30
B.32.5
C.35
D.37.5

查看答案和解析>>

同步練習(xí)冊(cè)答案