【題目】如圖,在平面直角坐標(biāo)系中,二次函數(shù)yax2+bx4a≠0)的圖象與x軸交于點(diǎn)A(﹣2,0)與點(diǎn)C8,0)兩點(diǎn),與y軸交于點(diǎn)B,其對(duì)稱(chēng)軸與x軸交于點(diǎn)D

1)直接寫(xiě)出B點(diǎn)的坐標(biāo);

2)求該二次函數(shù)的解析式;

3)若點(diǎn)Pm,n)是該二次函數(shù)圖象上的一個(gè)動(dòng)點(diǎn)(其中m0,n0),連結(jié)PB,PD,BD,AB.請(qǐng)問(wèn)是否存在點(diǎn)P,使得BDP的面積恰好等于ADB的面積?若存在請(qǐng)求出此時(shí)點(diǎn)P的坐標(biāo),若不存在說(shuō)明理由.

【答案】1)(0,﹣4);(2yx2x4;(3)存在,(,-

【解析】

1)利用待定系數(shù)法求拋物線的解析式,再確定B0,﹣4);

2)利用(1)可以得到答案;

3)連接OP,如圖,設(shè)Pmm2m4)(0m8),利用SPBDSPOD+SPOBSBOD×3×(﹣m2+m+4+×4×m×3×4×5×4得到關(guān)于m的方程,然后解方程求出m即可得到P點(diǎn)坐標(biāo).

解:(1)把A(﹣2,0)和C8,0)代入yax2+bx4,得

解得 ,

拋物線的解析式為yx2x4

當(dāng)x0時(shí),yx2x4=﹣4,則B0,﹣4),

2)由(1)知,拋物線的解析式為yx2x4

3)存在.

∵yx2x4x32,

拋物線的對(duì)稱(chēng)軸為直線x3

∴D3,0).

由(1)知, `B0,﹣4).

連接OP,如圖,設(shè)Pm,m2m4)(0m8),

∵SPBDSPOD+SPOBSBOD,SABD×5×410,

△BDP的面積恰好等于△ADB的面積,

×3×(﹣m2+m+4+×4×m×3×4×5×4

整理得3m234m+800,解得m1m28(舍去),

∴P點(diǎn)坐標(biāo)為(,-).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知關(guān)于x的一元二次方程x2x+m0有兩個(gè)實(shí)數(shù)根.

1)若m為正整數(shù),求此方程的根.

2)設(shè)此方程的一個(gè)實(shí)數(shù)根為b,若y4b24b3m+3,求y的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知直線l與⊙O相離.OAl于點(diǎn)A,交⊙O于點(diǎn)P,OA5AB與⊙O相切于點(diǎn)B,BP的延長(zhǎng)線交直線l于點(diǎn)C

1)求證:ABAC

2)若PC2,求⊙O的半徑及線段PB的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】豐都縣某中學(xué)為培養(yǎng)學(xué)生綜合實(shí)踐能力,開(kāi)展了一系列綜合實(shí)踐活動(dòng),有一次財(cái)商訓(xùn)練活動(dòng)中,小明同學(xué)準(zhǔn)備去集市批發(fā)兩種商品用于活動(dòng)中交易.預(yù)先了解到AB兩種商品的價(jià)格之和為27元,小明計(jì)劃購(gòu)買(mǎi)B商品的數(shù)量比A商品的數(shù)量多2件,但一共不超過(guò)25件,且每樣不少于3件,但小明去購(gòu)買(mǎi)時(shí)發(fā)現(xiàn)A商品正打九折銷(xiāo)售,而B商品的價(jià)格提高了20%,小明決定將AB產(chǎn)品的購(gòu)買(mǎi)數(shù)量對(duì)調(diào),這樣實(shí)際花費(fèi)只比計(jì)劃多8元,已知價(jià)格和購(gòu)買(mǎi)數(shù)量均為整數(shù),則小明購(gòu)買(mǎi)兩種商品實(shí)際花費(fèi)為_____元.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù)y=﹣x2+2x+m的部分圖象如圖所示,則關(guān)于x的一元二次方程﹣x2+2x+m0的解為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】兩個(gè)全等的等腰直角三角形按如圖方式放置在平面直角坐標(biāo)系中,OAx軸上,已知∠COD=OAB=90°,OC=,反比例函數(shù)y=的圖象經(jīng)過(guò)點(diǎn)B.

(1)求k的值.

(2)把△OCD沿射線OB移動(dòng),當(dāng)點(diǎn)D落在y=圖象上時(shí),求點(diǎn)D經(jīng)過(guò)的路徑長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在中,,點(diǎn)分別是上的點(diǎn),將沿折疊,使得點(diǎn)落在上的.

1)設(shè)的長(zhǎng)可用含的代數(shù)式表示為________;

2)若點(diǎn)的中點(diǎn),求的長(zhǎng);

3)若,判斷四邊形的形狀,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在Rt△ABC中,∠ABC=90°,AB=BC=2,以AB的中點(diǎn)為圓心,OA的長(zhǎng)為半徑作半圓交AC于點(diǎn)D,則圖中陰影部分的面積為( )

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,⊙O內(nèi)切于正方形ABCD,邊AD、CD分別與⊙O切于點(diǎn)E、F,點(diǎn)MN分別在線段DE、DF上,且MN與⊙O相切,若MBN的面積為8,則⊙O的半徑為( 。

A.B.2C.D.2

查看答案和解析>>

同步練習(xí)冊(cè)答案