如圖,在平面直角坐標(biāo)系xOy中,反比例函數(shù)數(shù)學(xué)公式的圖象與一次函數(shù)y=kx-k的圖象的一個(gè)交點(diǎn)為A(-1,n).
(1)求這個(gè)一次函數(shù)的解析式;
(2)若P是x軸上一點(diǎn),且滿足∠APO=45°,直接寫出點(diǎn)P的坐標(biāo).

解:(1)∵點(diǎn)A(-1,n)在反比例函數(shù)y=-的圖象上,
∴n=2,
∴點(diǎn)A的坐標(biāo)為(-1,2),
∵點(diǎn)A在一次函數(shù)y=kx-k的圖象上,
∴2=-k-k,
∴k=-1,
∴一次函數(shù)的解析式為y=-x+1;
(2)如圖所示,當(dāng)P與F重合時(shí),AE=EF=2,此時(shí)P(1,0);
當(dāng)P與G重合時(shí),AE=EG=2,此時(shí)P(-3,0).
分析:(1)將A坐標(biāo)代入反比例解析式中求出n的值,確定出A的坐標(biāo),再講A坐標(biāo)代入y=kx-k中求出k的值,即可確定出一次函數(shù)解析式;
(2)如圖所示,由題意當(dāng)三角形AEF與三角形AEG為等腰直角三角形時(shí),滿足題意,此時(shí)P與F、G重合,求出坐標(biāo)即可.
點(diǎn)評(píng):此題考查了一次函數(shù)與反比例函數(shù)的交點(diǎn)問(wèn)題,涉及的知識(shí)有:待定系數(shù)法求函數(shù)解析式,求函數(shù)的交點(diǎn)坐標(biāo),坐標(biāo)與圖形性質(zhì),利用了數(shù)形結(jié)合的思想,熟練掌握待定系數(shù)法是解本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在平面直角坐標(biāo)中,四邊形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,點(diǎn)P為x軸上的一個(gè)動(dòng)點(diǎn),但是點(diǎn)P不與點(diǎn)0、點(diǎn)A重合.連接CP,D點(diǎn)是線段AB上一點(diǎn),連接PD.
(1)求點(diǎn)B的坐標(biāo);
(2)當(dāng)∠CPD=∠OAB,且
BD
AB
=
5
8
,求這時(shí)點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•渝北區(qū)一模)如圖,在平面直角坐標(biāo)xoy中,以坐標(biāo)原點(diǎn)O為圓心,3為半徑畫圓,從此圓內(nèi)(包括邊界)的所有整數(shù)點(diǎn)(橫、縱坐標(biāo)均為整數(shù))中任意選取一個(gè)點(diǎn),其橫、縱坐標(biāo)之和為0的概率是
5
29
5
29

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在平面直角坐標(biāo)中,等腰梯形ABCD的下底在x軸上,且B點(diǎn)坐標(biāo)為(4,0),D點(diǎn)坐標(biāo)為(0,3),則AC長(zhǎng)為
5
5

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在平面直角坐標(biāo)xOy中,已知點(diǎn)A(-5,0),P是反比例函數(shù)y=
k
x
圖象上一點(diǎn),PA=OA,S△PAO=10,則反比例函數(shù)y=
k
x
的解析式為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在平面直角坐標(biāo)中,四邊形OABC是等腰梯形,CB∥OA,OC=AB=4,BC=6,∠COA=45°,動(dòng)點(diǎn)P從點(diǎn)O出發(fā),在梯形OABC的邊上運(yùn)動(dòng),路徑為O→A→B→C,到達(dá)點(diǎn)C時(shí)停止.作直線CP.
(1)求梯形OABC的面積;
(2)當(dāng)直線CP把梯形OABC的面積分成相等的兩部分時(shí),求直線CP的解析式;
(3)當(dāng)△OCP是等腰三角形時(shí),請(qǐng)寫出點(diǎn)P的坐標(biāo)(不要求過(guò)程,只需寫出結(jié)果).

查看答案和解析>>

同步練習(xí)冊(cè)答案