(2004•內(nèi)江)如圖,∠BAC的平分線AE交BC于點(diǎn)D,交△ABC的外接圓于點(diǎn)E.求證:BE2=ED•EA.

【答案】分析:可以通過(guò)圓周角定理及相似三角形的判定方法得到△ABE∽△BDE,根據(jù)相似三角形對(duì)應(yīng)邊成比例即可求得結(jié)論.
解答:證明:∵∠1=∠2,∠2=∠3,
∴∠1=∠3.
又∵∠E=∠E,
∴△ABE∽△BDE.

∴BE2=ED•EA.
點(diǎn)評(píng):乘積的形式通?梢赞D(zhuǎn)化為比例的形式,通過(guò)相似三角形的性質(zhì)得出.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:2002年全國(guó)中考數(shù)學(xué)試題匯編《二次函數(shù)》(04)(解析版) 題型:解答題

(2004•內(nèi)江)如圖,已知拋物線y=ax2+bx+c與x軸交于A(k,0)(k<0)、B(3,0)兩點(diǎn),與y軸正半軸交于C點(diǎn),且tan∠CAO=3.
(1)求此拋物線的解析式(系數(shù)中可含字母k);
(2)設(shè)點(diǎn)D(0,t)在x軸下方,點(diǎn)E在拋物線上,若四邊形ADEC為平行四邊形,試求t與k的函數(shù)關(guān)系式;
(3)若題(2)中的平行四邊形ADEC為矩形,試求出D的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2004年全國(guó)中考數(shù)學(xué)試題匯編《二次函數(shù)》(05)(解析版) 題型:解答題

(2004•內(nèi)江)如圖,等腰直角三角形ABC的斜邊BC的長(zhǎng)為8,平行于BC邊的直線分別交AB,AC于M,N,將△AMN沿直線MN翻折,得到△A′MN,設(shè)△A′MN與△ABC的公共部分的面積為y,MN的長(zhǎng)為x.
(1)如果A′在△ABC的內(nèi)部,求出以x為自變量的函數(shù)y的解析式,并指出自變量x的取值范圍;
(2)是否存在直線MN,使y的值為△ABC面積的?如果存在,則求出求出對(duì)應(yīng)的x值;如果不存在,則說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2004年全國(guó)中考數(shù)學(xué)試題匯編《二次函數(shù)》(05)(解析版) 題型:解答題

(2004•內(nèi)江)如圖,已知拋物線y=ax2+bx+c與x軸交于A(k,0)(k<0)、B(3,0)兩點(diǎn),與y軸正半軸交于C點(diǎn),且tan∠CAO=3.
(1)求此拋物線的解析式(系數(shù)中可含字母k);
(2)設(shè)點(diǎn)D(0,t)在x軸下方,點(diǎn)E在拋物線上,若四邊形ADEC為平行四邊形,試求t與k的函數(shù)關(guān)系式;
(3)若題(2)中的平行四邊形ADEC為矩形,試求出D的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2004年四川省內(nèi)江市中考數(shù)學(xué)試卷(加試卷)(解析版) 題型:解答題

(2004•內(nèi)江)如圖,已知拋物線y=ax2+bx+c與x軸交于A(k,0)(k<0)、B(3,0)兩點(diǎn),與y軸正半軸交于C點(diǎn),且tan∠CAO=3.
(1)求此拋物線的解析式(系數(shù)中可含字母k);
(2)設(shè)點(diǎn)D(0,t)在x軸下方,點(diǎn)E在拋物線上,若四邊形ADEC為平行四邊形,試求t與k的函數(shù)關(guān)系式;
(3)若題(2)中的平行四邊形ADEC為矩形,試求出D的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2004年四川省內(nèi)江市中考數(shù)學(xué)試卷(加試卷)(解析版) 題型:解答題

(2004•內(nèi)江)如圖,等腰直角三角形ABC的斜邊BC的長(zhǎng)為8,平行于BC邊的直線分別交AB,AC于M,N,將△AMN沿直線MN翻折,得到△A′MN,設(shè)△A′MN與△ABC的公共部分的面積為y,MN的長(zhǎng)為x.
(1)如果A′在△ABC的內(nèi)部,求出以x為自變量的函數(shù)y的解析式,并指出自變量x的取值范圍;
(2)是否存在直線MN,使y的值為△ABC面積的?如果存在,則求出求出對(duì)應(yīng)的x值;如果不存在,則說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案