精英家教網(wǎng)如圖,△ABC是等腰直角三角形,且∠ACB=90度.曲線CDEF…叫做“等腰直角三角形的漸開(kāi)線”,其中
CD
,
DE
EF
,…的圓心依次按A,B,C循環(huán).如果AC=1,那么曲線CDEF和線段CF圍成圖形的面積為( 。
A、
(12+7
2
4
B、
(9+5
2
)π+2
4
C、
(12+7
2
)π+2
4
D、
(9+5
2
4
分析:曲線CDEF和線段CF圍成圖形的面積為半徑分別為1,
2
+1,
2
+2,圓心角分別為135°,135°,90°的扇形以及△ABC組成的,代入扇形面積公式相加即可.
解答:解:曲線CDEF和線段CF圍成圖形的面積是由三個(gè)圓心不同,半徑不同的扇形以及△ABC組成,所以根據(jù)面積公式可得:
135π×1+135π×(
2
+1)2+90π×(
2
+2)2
360
+1×1÷2=
(12+7
2
)π+2
4

故選C.
點(diǎn)評(píng):此題考查扇形面積公式,解題的關(guān)鍵是確定三個(gè)扇形的圓心,半徑,及圓心角,然后利用扇形面積公式進(jìn)行計(jì)算.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,△ABC是等腰直角三角形,BC是斜邊,點(diǎn)P是△ABC內(nèi)一定點(diǎn),延長(zhǎng)BP至P′,將△ABP繞點(diǎn)A旋轉(zhuǎn)后,與△ACP′重合,如果AP=
2
,那么PP′=
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

22、如圖,△ABC是等腰三角形,AB=AC,D為直線BC上一點(diǎn),DE⊥AC,DF⊥AB,CH⊥AB,
(1)如圖(1)若D為BC的中點(diǎn),求證:DE+DF=CH.
(2)如圖(2)若D為BC延長(zhǎng)線上一點(diǎn),其他條件不變,線段DE.DF.CH 之間有何數(shù)量關(guān)系,請(qǐng)證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,△ABC是等腰直角三角形,∠ACB=90°,BC=AC,把△ABC繞點(diǎn)A按順時(shí)針?lè)较蛐D(zhuǎn)45°后得到△AB′C′,若AB=2,則線段BC在上述旋轉(zhuǎn)過(guò)程中所掃過(guò)部分(陰影部分)的面積是
 
(結(jié)果保留π).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•資陽(yáng))如圖,△ABC是等腰三角形,點(diǎn)D是底邊BC上異于BC中點(diǎn)的一個(gè)點(diǎn),∠ADE=∠DAC,DE=AC.運(yùn)用這個(gè)圖(不添加輔助線)可以說(shuō)明下列哪一個(gè)命題是假命題?(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知:如圖,△ABC是等腰直角三角形,D為斜邊AB上任意一點(diǎn)(不與A,B重合),連接CD,作EC⊥DC,且EC=DC,連接AE.
(1)求證:∠E+∠ADC=180°.
(2)猜想:當(dāng)點(diǎn)D在何位置時(shí),四邊形AECD是正方形?說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案