【題目】某商場統(tǒng)計了今年1﹣5月A、B兩種品牌冰箱的銷售情況,并將獲得的數(shù)據(jù)繪制成如圖折線統(tǒng)計圖:
(1)根據(jù)圖中數(shù)據(jù)填寫表格.
(2)通過計算該商場這段時間內(nèi)A、B兩種品牌冰箱月銷售量的方差,比較這兩種品牌冰箱月銷售量的穩(wěn)定性.
【答案】
(1)解:A品牌的銷售量由小到大排列為:13,14,15,16,17,A品牌的中位數(shù)為15,平均數(shù)為 =15,
B品牌的銷售量由小到大排列為:10,14,15,16,20,B品牌的中位數(shù)為15,平均數(shù)為 =15,
填表A行:15,15,;
B行:20,15;
(2)解:A品牌的方差= [(13﹣15)2+(14﹣15)2+(15﹣15)2+(16﹣15)2+[(17﹣15)2]=2,
B品牌的方差= [(10﹣15)2+(14﹣15)2+(15﹣15)2+(16﹣15)2+[(20﹣15)2]=10.4,
因為10.4>2,所以A品牌的銷售量較為穩(wěn)定.
【解析】(1)根據(jù)一組數(shù)據(jù)按從小到大(或從大到。┑捻樞蛞来闻帕,處在中間位置的一個數(shù)(或最中間兩個數(shù)據(jù)的平均數(shù),中位數(shù)不一定在這組數(shù)據(jù)中);計算出平均數(shù);(2)根據(jù)方差(樣本方差)是每個樣本值與全體樣本值的平均數(shù)之差的平方值的平均數(shù),在實際問題中,方差是偏離程度的大。挥嬎愠鯝品牌的方差和B品牌的方差,由B品牌的方差>A品牌的方差得到A品牌的銷售量較為穩(wěn)定.
【考點精析】通過靈活運用中位數(shù)、眾數(shù),掌握中位數(shù)是唯一的,僅與數(shù)據(jù)的排列位置有關(guān),它不能充分利用所有數(shù)據(jù);眾數(shù)可能一個,也可能多個,它一定是這組數(shù)據(jù)中的數(shù)即可以解答此題.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,長方形紙片ABCD中,AB=4,BC=6,將△ABC沿AC折疊,使點B落在點E處,CE交AD于點F,則△AFC的面積等于___.
【答案】
【解析】
由矩形的性質(zhì)可得AB=CD=4,BC=AD=6,AD//BC,由平行線的性質(zhì)和折疊的性質(zhì)可得∠DAC=∠ACE,可得AF=CF,由勾股定理可求AF的長,即可求△AFC的面積.
解:四邊形ABCD是矩形
,,
,
折疊
,
在中,,
,
.
故答案為:.
【點睛】
本題考查了翻折變換,矩形的性質(zhì),勾股定理,利用勾股定理求AF的長是本題的關(guān)鍵.
【題型】填空題
【結(jié)束】
12
【題目】某公司要招聘一名新的大學(xué)生,公司對入圍的甲、乙兩名候選人進(jìn)行了三項測試,成績?nèi)绫硭,根?jù)實際需要,規(guī)定能力、技能、學(xué)業(yè)三項測試得分按5:3:2的比例確定個人的測試成績,得分最高者被錄取,此時______將被錄。
得分項目 | 能力 | 技能 | 學(xué)業(yè) |
甲 | 95 | 84 | 61 |
乙 | 87 | 80 | 77 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如果關(guān)于x的一次函數(shù)y=(a+1)x+(a﹣4)的圖象不經(jīng)過第二象限,且關(guān)于x的分式方程有整數(shù)解,那么整數(shù)a值不可能是( )
A. 0B. 1C. 3D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2018年5月,某城遭遇暴雨水災(zāi),武警戰(zhàn)士乘一沖鋒舟從A地逆流而上,前往C地營救受困群眾,途經(jīng)B地時,由所攜帶的救生艇將B地受困群眾運回A地,沖鋒舟繼續(xù)前進(jìn),到C地接到群眾后立刻返回A地,途中曾與救生艇相遇,沖鋒舟和救生艇距A地的距離y(千米)和沖鋒舟出發(fā)后所用時間x(分)之間的函數(shù)圖象如圖所示,假設(shè)群眾上下沖鋒舟和救生艇的時間忽略不計,水流速度和沖鋒舟在靜水中的速度不變.
(1)沖鋒舟從A地到C地的時間為 分鐘,沖鋒舟在靜水中的速度為 千米/分,水流的速度為 千米/分.
(2)沖鋒舟將C地群眾安全送到A地后,又立即去接應(yīng)救生艇,已知救生艇與A地的距離y(千米)和沖鋒舟出發(fā)后所用時間x(分鐘)之間的函數(shù)關(guān)系式為y=kx+b,若沖鋒舟在距離A地 千米處與救生艇第二次相遇,求k、b的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖(1),在矩形ABCD中,AB=3,BC=4,連接BD.現(xiàn)將一個足夠大的直角三角板的直角頂點P放在BD所在的直線上,一條直角邊過點C,另一條直角邊與AB所在的直線交于點G.
(1)是否存在這樣的點P,使點P、C、G為頂點的三角形與△GCB全等?若存在,畫出圖形,并直接在圖形下方寫出BG的長.(如果你有多種情況,請用①、②、③、…表示,每種情況用一個圖形單獨表示,如果圖形不夠用,請自己畫圖)
(2)如圖(2),當(dāng)點P在BD的延長線上時,以P為圓心、PB為半徑作圓分別交BA、BC延長線于點E、F,連EF,分別過點G、C作GM⊥EF,CN⊥EF,M、N為垂足.試探究PM與FN的關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某公司投資1200萬元購買了一條新生產(chǎn)線生產(chǎn)新產(chǎn)品.根據(jù)市場調(diào)研,生產(chǎn)每件產(chǎn)品需要成本50元,該產(chǎn)品進(jìn)入市場后不得低于80元/件且不得超過160元/件,該產(chǎn)品銷售量y(萬件)與產(chǎn)品售價x(元)之間的關(guān)系如圖所示.
(1)求y與x之間的函數(shù)關(guān)系式,并寫出x的取值范圍;
(2)第一年公司是盈利還是虧損?求出當(dāng)盈利最大或虧損最小時的產(chǎn)品售價;
(3)在(2)的前提下,即在第一年盈利最大或者虧損最小時,公司第二年重新確定產(chǎn)品售價,能否使前兩年盈利總額達(dá)790萬元?若能,求出第二年產(chǎn)品售價;若不能,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平行四邊形ABCD中,AC與BD相交于0,AE⊥BD于E,CF⊥BD于F,則圖中的全等三角形共( )
A. 5對B. 6對C. 7對D. 8對
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】勾股定理神秘而美妙,它的證法多樣,其巧妙各有不同,其中的“面積法”給了小聰以靈感,他驚喜的發(fā)現(xiàn),當(dāng)兩個全等的直角三角形如圖1或圖2擺放時,都可以用“面積法”來證明,下面是小聰利用圖1證明勾股定理的過程:
將兩個全等的直角三角形按圖1所示擺放,其中∠DAB=90°,求證:a2+b2=c2.
證明:連結(jié)DB,過點D作BC邊上的高DF,則DF=EC=b﹣a,
∵S四邊形ADCB=S△ACD+S△ABC= 12 b2+ 12 ab.
又∵S四邊形ADCB=S△ADB+S△DCB= 12 c2+ 12 a(b﹣a)
∴ 12 b2+ 12 ab= 12 c2+ 12 a(b﹣a)
∴a2+b2=c2
請參照上述證法,利用圖2完成下面的證明.
將兩個全等的直角三角形按圖2所示擺放,其中∠DAB=90°.求證:a2+b2=c2 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一場2015亞洲杯賽B組第二輪比賽中,中國隊?wèi){借吳曦和孫可在下半場的兩個進(jìn)球,提前一輪小組出線。如圖,足球場上守門員在 處開出一高球,球從離地面1米的 處飛出( 在 軸上),運動員孫可在距 點6米的 處發(fā)現(xiàn)球在自己頭的正上方達(dá)到最高點 ,距地面約4米高,球落地后又一次彈起.據(jù)實驗測算,足球在草坪上彈起后的拋物線與原來的拋物線形狀相同,最大高度減少到原來最大高度的一半.
(1)求足球開始飛出到第一次落地時,該拋物線的函數(shù)表達(dá)式.
(2)足球第一次落地點 距守門員多少米?(取 )
(3)孫可要搶到足球第二個落地點 ,他應(yīng)從第一次落地點 再向前跑多少米?(取 )
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com