如圖,直線EF經(jīng)過(guò)正方形ABCD的頂點(diǎn)D,AE⊥EF于E,CF⊥EF于F,求證:AE=DF.
證明:∵正方形ABCD,
∴AD=DC,
∵∠CDF+∠ADE=90°,且∠DAE+∠ADE=90°,
∴∠DAE=∠CDF,
∵∠DFC=∠AED,
∴△ADE≌△DCF,
即AE=DF.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,正方形ABCD的邊長(zhǎng)為3,以CD為一邊向CD兩側(cè)作等邊三角形PCD和等邊三角形QCD,那么PQ的長(zhǎng)是(  )
A.
3
3
2
B.
2
3
3
C.3
3
D.6
3

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖:∠MON=90°,在∠MON的內(nèi)部有一個(gè)正方形AOCD,點(diǎn)A、C分別在射線OM、ON上,點(diǎn)B1是ON上的任意一點(diǎn),在∠MON的內(nèi)部作正方形AB1C1D1
(1)連續(xù)D1D,求證:∠D1DA=90°;
(2)連接CC1,猜一猜,∠C1CN的度數(shù)是多少?并證明你的結(jié)論;
(3)在ON上再任取一點(diǎn)B2,以AB2為邊,在∠MON的內(nèi)部作正方形AB2C2D2,觀察圖形,并結(jié)合(1)、(2)的結(jié)論,請(qǐng)你再做出一個(gè)合理的判斷.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,在△ABC中,點(diǎn)D、E、F分別在BC、AB、AC上,且DEAC,DFAB.
(1)如果∠BAC=90°,那么四邊形AEDF是______形;
(2)若四邊形AEDF是正方形,則△ABC中需滿足______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖:延長(zhǎng)正方形ABCD的邊BC至E,使CE=AC,連接AE交CD于F,則∠AFC=______度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,四邊形ABCD是正方形,AE⊥BE于點(diǎn)E,且AE=3,BE=4,則陰影部分的面積是______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,AC是正方形ABCD的對(duì)角線,點(diǎn)O是AC的中點(diǎn),點(diǎn)Q是AB上一點(diǎn),連接CQ,DP⊥CQ于點(diǎn)E,交BC于點(diǎn)P,連接OP,OQ;
求證:
(1)△BCQ≌△CDP;
(2)OP=OQ.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,正方形ABCD的邊長(zhǎng)為1,AB,AD上各有一點(diǎn)P,Q,如果△APQ的周長(zhǎng)為2,求∠PCQ的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,正方形ABCD的邊長(zhǎng)為1,E、F分別是BC、CD上的點(diǎn),且△AEF是等邊三角形,則BE的長(zhǎng)為_(kāi)_____.

查看答案和解析>>

同步練習(xí)冊(cè)答案