⊙o的半徑是13,弦AB∥CD,AB=24,CD=10,則AB與CD的距離是( )
A.7 B.17 C.7或17 D.4
C.
【解析】
試題分析: ①當AB、CD在圓心兩側時;過O作OE⊥AB交AB于E點,過O作OF⊥CD交CD于F點,連接OA、OC,如圖所示:∵半徑r=13,弦AB∥CD,且AB=24,CD=10,∴OA=OC=13,AE=EB=12,CF=FD=5,E、F、O在一條直線上,∴EF為AB、CD之間的距離,在Rt△OEA中,由勾股定理可得:OE2=OA2﹣AE2,∴OE==5,在Rt△OFC中,由勾股定理可得:OF2=OC2﹣CF2,∴OF==12,∴EF=OE+OF=17,AB與CD的距離為17;
②當AB、CD在圓心同側時;同①可得:OE=5,OF=12;則AB與CD的距離為:OF﹣OE=7;故AB與CD的距離是為7或17.故選C.
考點:1.垂徑定理;2.解直角三角形.
科目:初中數學 來源:2013屆浙江省桐鄉(xiāng)市桐星中學九年級文理聯賽模擬卷數學試卷(帶解析) 題型:填空題
⊙O的半徑是13,弦AB∥CD,AB=24,CD=10,則AB與CD的距離是 .
查看答案和解析>>
科目:初中數學 來源:2011-2012學年山東省博興縣九年級上學期期中學業(yè)水平測試數學試卷(解析版) 題型:填空題
⊙O的半徑是13,弦AB∥CD,AB=24,CD=10,則AB與CD的距離是 。
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com