【題目】如圖,AB=AC,BD⊥AC于D,CE⊥AB于E,CE,BD相交于點O,則圖中全等的直角三角形有__對.

【答案】4

【解析】

首先證明△ACE≌△ABD可得AD=AE,EC=BD,根據(jù)等式的性質(zhì)可得AB-AE=AC-AD,即EB=DC;再證明△EBC≌△DCB,△EOB≌△DOC即可.

解:△ACE≌△ABD,△EBC≌△DCB,△EOB≌△DOC,
∵BD、CE為高,
∴∠ADB=∠AEC=,90°,
在△AEC和△ADB中,
∠A=∠A,∠AEC=∠ADB,AB=AC,

∴△ACE≌△ABD(ASA);
∴AD=AE,EC=BD,
∴AB-AE=AC-AD,
即EB=DC,
在△EBC和△DCB中,
EB=DC,BC=BC,EC=DB,∴△EBC≌△DCB(SSS),
在△EOB和△DOC中,
EB=DC,∠OEB=∠ODC,∠EOB=∠DOC,

∴△EOB≌△DOC(AAS).
故答案為:3.

“點睛”本題考查三角形全等的判定方法,判定兩個三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定兩個三角形全等,判定兩個三角形全等時,必須有邊的參與,若有兩邊一角對應(yīng)相等時,角必須是兩邊的夾角.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列方程,是一元二次方程的是(
①3x2+x=20,②2x2﹣3xy+4=0,③x2 =4,④x2=0,⑤x2﹣3x﹣4=0.
A.①②
B.①②④⑤
C.①③④
D.①④⑤

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩名大學(xué)生去距學(xué)校36千米的某鄉(xiāng)鎮(zhèn)進行社會調(diào)查.他們從學(xué)校出發(fā),騎電動車行駛20分鐘時發(fā)現(xiàn)忘帶相機,甲下車前往,乙騎電動車按原路返回.乙取相機后(在學(xué)校取相機所用時間忽略不計),騎電動車追甲.在距鄉(xiāng)鎮(zhèn)13.5千米處追上甲后同車前往鄉(xiāng)鎮(zhèn).乙電動車的速度始終不變.設(shè)甲與學(xué)校相距y(千米),乙與學(xué)校相離y(千米),甲離開學(xué)校的時間為t(分鐘).y、yx之間的函數(shù)圖象如圖所示,結(jié)合圖象解答下列問題:

1)電動車的速度為   千米/分鐘;

2)甲步行所用的時間為   分;

3)求乙返回到學(xué)校時,甲與學(xué)校相距多遠?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=﹣x2+bx+c與x軸交于A(1,0),B(﹣3,0)兩點.

(1)求該拋物線的解析式;
(2)設(shè)(1)中的拋物線交y軸與C點,在該拋物線的對稱軸上是否存在點Q,使得△QAC的周長最?若存在,求出Q點的坐標(biāo);若不存在,請說明理由;
(3)在(1)中的拋物線上的第二象限上是否存在一點P,使△PBC的面積最大?若存在,求出點P的坐標(biāo)及△PBC的面積最大值;若沒有,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】拋物線y=x2+bx+c過點(2,﹣2)和(﹣1,10),與x軸交于A、B兩點,與y軸交于C點.
(1)求拋物線的解析式.
(2)求△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠B=∠C,AB=10 cm,BC=8 cm,D為AB的中點,點P在線段上以3 cm/s的速度由點B向點C運動,同時,點Q在線段CA上以相同速度由點C向點A運動,一個點到達終點后另一個點也停止運動.當(dāng)△BPD與△CQP全等時,求點P運動的時間.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠ACB=90°,AC=1,將△ABC繞點C順時針旋轉(zhuǎn)60°至△A′B′C,點A的對應(yīng)點A′恰好落在AB上,求BB′的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知ABC中,AB=AC=cm,BAC=120°,點PBC上從CB運動,點QAB、AC上沿B→A→C運動,點P、Q分別從點C、B同時出發(fā),速度均為1cm/s,當(dāng)其中一點到達終點時兩點同時停止運動,則當(dāng)運動時間t=_____s時,PAQ為直角三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△OAB中,∠OAB=90°,OA=AB=6,將△OAB繞點O沿逆時針方向旋轉(zhuǎn)90°得到△OA1B1

(1)線段OA1的長是 , ∠AOB1的度數(shù)是
(2)連接AA1 , 求證:四邊形OAA1B1是平行四邊形;
(3)求點B旋轉(zhuǎn)到點B1的位置所經(jīng)過的路線的長.

查看答案和解析>>

同步練習(xí)冊答案