將函數(shù)y=-
1
2
(x-1)2+5
圖象向
平移
2
2
個單位可得函數(shù)y=-
1
2
(x+1)2+5
的圖象.
分析:直接根據(jù)“上加下減,左加右減”的原則進(jìn)行解答即可.
解答:解:由“左加右減”的原則將函數(shù)y=-
1
2
(x-1)2+5的圖象向左平移2個單位,所得二次函數(shù)的解析式為:y=-
1
2
(x+1)2+5;
故答案為:左,2.
點評:本題考查的是二次函數(shù)的圖象與幾何變換,熟知函數(shù)圖象幾何變換的法則是解答此題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知:將函數(shù)y=
3
3
x
的圖象向上平移2個單位,得到一個新的函數(shù)圖象.
(1)寫出這個新的函數(shù)的解析式;
(2)若平移前后的這兩個函數(shù)圖象分別與y軸交于O,A兩點,與直線x=-
3
交于C,B兩點.試判斷以A,B,C,O四點為頂點四邊形形狀,并說明理由;
(3)若(2)中的四邊形(不包括邊界)始終覆蓋著二次函數(shù)y=x2-2bx+b2+
1
2
的圖象一部分,求滿足條件的實數(shù)b的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

將函數(shù)y=
1
2
x2-2x+3
進(jìn)行配方,正確的結(jié)果是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

(2012•重慶)企業(yè)的污水處理有兩種方式,一種是輸送到污水廠進(jìn)行集中處理,另一種是通過企業(yè)的自身設(shè)備進(jìn)行處理.某企業(yè)去年每月的污水量均為12000噸,由于污水廠處于調(diào)試階段,污水處理能力有限,該企業(yè)投資自建設(shè)備處理污水,兩種處理方式同時進(jìn)行.1至6月,該企業(yè)向污水廠輸送的污水量y1(噸)與月份x(1≤x≤6,且x取整數(shù))之間滿足的函數(shù)關(guān)系如下表:
 月份x(月)  1  2  4
 輸送的污水量y1(噸)  12000  6000  4000  3000  2400 2000 
7至12月,該企業(yè)自身處理的污水量y2(噸)與月份x(7≤x≤12,且x取整數(shù))之間滿足二次函數(shù)關(guān)系式為y2=ax2+c(a≠0).其圖象如圖所示.1至6月,污水廠處理每噸污水的費用:z1(元)與月份x之間滿足函數(shù)關(guān)系式:z1=
1
2
x
,該企業(yè)自身處理每噸污水的費用:z2(元)與月份x之間滿足函數(shù)關(guān)系式:z2=
3
4
x-
1
12
x2
;7至12月,污水廠處理每噸污水的費用均為2元,該企業(yè)自身處理每噸污水的費用均為1.5元.
(1)請觀察題中的表格和圖象,用所學(xué)過的一次函數(shù)、反比例函數(shù)或二次函數(shù)的有關(guān)知識,分別直接寫出y1,y2與x之間的函數(shù)關(guān)系式;
(2)請你求出該企業(yè)去年哪個月用于污水處理的費用W(元)最多,并求出這個最多費用;
(3)今年以來,由于自建污水處理設(shè)備的全面運行,該企業(yè)決定擴(kuò)大產(chǎn)能并將所有污水全部自身處理,估計擴(kuò)大產(chǎn)能后今年每月的污水量都將在去年每月的基礎(chǔ)上增加a%,同時每噸污水處理的費用將在去年12月份的基礎(chǔ)上增加(a-30)%,為鼓勵節(jié)能降耗,減輕企業(yè)負(fù)擔(dān),財政對企業(yè)處理污水的費用進(jìn)行50%的補(bǔ)助.若該企業(yè)每月的污水處理費用為18000元,請計算出a的整數(shù)值.
(參考數(shù)據(jù):
231
≈15.2,
419
≈20.5,
809
≈28.4)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

(2013•邵東縣模擬)重慶市某房地產(chǎn)開發(fā)公司在2012年2月以來銷售商品房時,市場營銷部經(jīng)分析發(fā)現(xiàn):隨著國家政策調(diào)控措施的持續(xù)影響,大多市民持幣觀望態(tài)度濃厚,從2月起第1周到第五周,房價y1(百元/m2)與周數(shù)x(1≤x≤5,且x取正整數(shù))之間存在如圖所示的變化趨勢:3月中旬由于房屋剛性需求的釋放,出現(xiàn)房地產(chǎn)市場“小陽春”行情,房價逆市上揚,從第6周到第12周,房價y2與周數(shù)x(6≤x≤12,且x取整數(shù))之間關(guān)系如下表:
周數(shù)x 6 7 9 10 12
房價y2(百元/m2 68 69 71 72 74
(1)根據(jù)如圖所示的變化趨勢,直接寫出y1與x之間滿足的函數(shù)關(guān)系式;請觀察題中的表格,用所學(xué)過的一次函數(shù)、反比例函數(shù)或二次函數(shù)的有關(guān)知識,直接寫出y2與x之間的函數(shù)關(guān)系式;
(2)已知樓盤的造價為每平米30百元,該樓盤在1至5周的銷售量p1(百平方米)與周數(shù)x滿足函數(shù)關(guān)系式p1=x+74(1≤x≤5,且x為整數(shù)),6至12周的銷售量p2(百平方米)與周數(shù)x滿足函數(shù)關(guān)系式p2=2x+80(6≤x≤12,且x取整數(shù)),試求今年1至12周中哪個周銷售利潤最大,最大為多少萬元?
(3)市場營銷部分析預(yù)測:從五月開始,樓市成交均價將正常回落,五月(以四個周計算)每周的房價均比第12周下降了m%,樓盤的造價不變,每周的平均銷量將比第12周增加5m%,這樣以來5月份將完成總利潤20800萬元的銷售任務(wù),請你根據(jù)參考數(shù)據(jù),估算出m的最小整數(shù)值.(參考數(shù)據(jù):542=2916,552=3025,562=3136,572=3249)

查看答案和解析>>

同步練習(xí)冊答案