【題目】如圖,RtABC,ACB=90°,過點C的直線MNAB,DAB邊上一點,過點DDEBC,交直線MN于點E,垂足為F,連接CD,BE

(1)求證:CE=AD

(2)若DAB的中點,則∠A的度數(shù)滿足什么條件時,四邊形BECD是正方形?請說明理由.

【答案】(1)見解析;(2) 當(dāng)∠A=45°時,四邊形BECD是正方形,理由見解析.

【解析】分析:(1)先求出四邊形ADEC是平行四邊形,根據(jù)平行四邊形的性質(zhì)推出即可;
(2)求出四邊形BECD是平行四邊形,根據(jù)直角三角形的斜邊上的中線求出 CD=BD,根據(jù)菱形的判定,和正方形的判定推出即可.

詳解:(1)證明:∵DE⊥BC,

∴∠DFB=90°,

∵∠ACB=90°,

∴∠ACB=∠DFB,

∴AC∥DE,

∵MN∥AB,即CE∥AD,

∴四邊形ADEC是平行四邊形,

∴CE=AD;

(2)解:當(dāng)∠A=45°時,四邊形BECD是正方形,

理由如下:∵∠ACB=90°,∠A=45°,

∴∠ABC=∠A=45°,

∴AC=BC,

∵D為BA中點,

∴CD⊥AB,AD=BD

∴∠CDB=90°,
∵CE=AD,
∴BD=CE,
∵BD∥CE,
∴四邊形BECD是平行四邊形,
∵∠ACB=90°,D為AB中點,
∴CD=BD,
∴四邊形BECD是菱形;

∴四邊形BECD是正方形,

即當(dāng)∠A=45°時,四邊形BECD是正方形.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2016928-1231日,山東臨沂燈展中千萬盞彩燈點亮300畝天然花海.某日,從晚上17時開始每小時進入燈展的人數(shù)約為900人(之前該燈展有游客400人),同時每小時走出燈展的人數(shù)約為600人,已知該燈展的飽和人數(shù)約為1600人,則該燈展人數(shù)飽和時的時間約為( 。

A. 21 B. 22 C. 23 D. 24

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,半徑為1個單位的圓片上有一點A與數(shù)軸上的原點重合,AB是圓片的直徑.(注:結(jié)果保留π )

(1)把圓片沿數(shù)軸向右滾動半周,點B到達數(shù)軸上點C的位置,點C表示的數(shù)是   數(shù)(填“無理”或“有理”),這個數(shù)是   ;

(2)把圓片沿數(shù)軸滾動2周,點A到達數(shù)軸上點D的位置,點D表示的數(shù)是   ;

(3)圓片在數(shù)軸上向右滾動的周數(shù)記為正數(shù),圓片在數(shù)軸上向左滾動的周數(shù)記為負數(shù),依次運動情況記錄如下:+2,﹣1,+3,﹣4,﹣3

   次滾動后,A點距離原點最近,第   次滾動后,A點距離原點最遠.

當(dāng)圓片結(jié)束運動時,A點運動的路程共有   ,此時點A所表示的數(shù)是   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,點C,D是半圓O的三等分點,過點C作⊙O的切線交AD的延長線于點E,過點D作DF⊥AB于點F,交⊙O于點H,連接DC,AC.
(1)求證:∠AEC=90°;
(2)試判斷以點A,O,C,D為頂點的四邊形的形狀,并說明理由;
(3)若DC=2,求DH的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計算:

(1)

(2)

(3)

(4)[ 2- ()×24 ]÷5×(- 1)2001

(5)

(6) -22 -(-1)2001×(- )÷+(-3)2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1是某班學(xué)生上學(xué)的三種方式(乘車、步行、騎車)的人數(shù)分布直方圖和扇形圖2.
(1)該班有多少名學(xué)生;
(2)補上人數(shù)分布直方圖的空缺部分;
(3)若全年級有800人,估計該年級步行有名學(xué)生.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若點P1(x1 , y1),P2(x2 , y2)在反比例函數(shù)y= (k>0)的圖像上,且x1=﹣x2 , 則( )
A.y1<y2
B.y1=y2
C.y1>y2
D.y1=﹣y2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是半圓直徑,半徑OC⊥AB于點O,AD平分∠CAB交弧BC于點D,AD與OC交于點E,連接CD、OD,給出以下四個結(jié)論: ①AC∥OD;②CE=OE;③∠CDE=∠COD;④2CD2=CEAB.
其中正確結(jié)論的序號是(在橫線上填上你認為所有正確結(jié)論的代號).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,數(shù)軸被折成90°,圓的周長為4個單位長度,在圓的4等分點處標(biāo)上數(shù)字0,1,2,3,先讓圓周上數(shù)字2所對應(yīng)的點與數(shù)軸上的數(shù)3所對應(yīng)的點重合,數(shù)軸固定,圓緊貼數(shù)軸沿著數(shù)軸的正方向滾動,那么數(shù)軸上的數(shù)2018將與圓周上的數(shù)字________重合.

查看答案和解析>>

同步練習(xí)冊答案