【題目】在長方形ABCD中,AB=3,BC=4,動點(diǎn)P從點(diǎn)A開始按A→B→C→D的方向運(yùn)動到點(diǎn)D.如圖,設(shè)動點(diǎn)P所經(jīng)過的路程為x,APD的面積為y.(當(dāng)點(diǎn)P與點(diǎn)AD重合時,y=0)

(1)寫出yx之間的函數(shù)解析式;

(2)畫出此函數(shù)的圖象

【答案】見解析.

【解析】試題分析:(1)分以下三種情況:點(diǎn)PAB上運(yùn)動、點(diǎn)PBC上運(yùn)動、點(diǎn)PCD上運(yùn)動,分別根據(jù)三角形的面積公式可得;

(2)根據(jù)(1)中函數(shù)關(guān)系式即可得.

試題解析:點(diǎn)P在邊AB,BC,CD上運(yùn)動時所對應(yīng)的yx之間的函數(shù)表達(dá)式不相同,故應(yīng)分段求出相應(yīng)的函數(shù)表達(dá)式.

①當(dāng)點(diǎn)P在邊AB上運(yùn)動,即0≤x<3時,

y=×4x=2x;

②當(dāng)點(diǎn)P在邊BC上運(yùn)動,即3≤x<7時,

y=×4×3=6;

③當(dāng)點(diǎn)P在邊CD上運(yùn)動,即7≤x≤10時,

y=×4(10-x)=-2x+20.

所以yx之間的函數(shù)表達(dá)式為:y=

(2)函數(shù)圖象如圖所示.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在邊長為1的菱形ABCD中,DAB=60°,連接對角線AC,以AC為邊作第二個菱形ACC1D1,使∠D1AC=60°,連接AC1,再以AC1為邊作第三個菱形AC1C2D2,使∠D2AC1=60°;…,按此規(guī)律所作的第六個菱形的邊長為( )

A. 9 B. C. 27 D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某公司在某市五個區(qū)投放共享單車供市民使用,投放量的分布及投放后的使用情況統(tǒng)計如下.

(1)該公司在全市一共投放了 萬輛共享單車;

(2)在扇形統(tǒng)計圖中,B區(qū)所對應(yīng)扇形的圓心角為 °;

(3)該公司在全市投放的共享單車的使用量占投放量的85%,請計算C區(qū)共享單車的使用量并補(bǔ)全條形統(tǒng)計圖.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知原點(diǎn)O,A(0,4),B(2,0),將△OAB繞平面內(nèi)一點(diǎn)P逆時針旋轉(zhuǎn)90°,使得旋轉(zhuǎn)后的三角形的兩個頂點(diǎn)恰好落在雙曲線 上,則旋轉(zhuǎn)中心P的坐標(biāo)為。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知△ABC內(nèi)接于⊙O , AC是⊙O的直徑,D是弧AB的中點(diǎn).過點(diǎn)DCB的垂線,分別交CB、CA延長線于點(diǎn)F、E

(1)判斷直線EF與⊙O的位置關(guān)系,并說明理由;
(2)若CF=6,∠ACB=60°,求陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直角梯形ABCD中,AD∥BC,AB⊥BC,AD=2,BC=3,∠BCD=45°,將腰CD以點(diǎn)D為中心逆時針旋轉(zhuǎn)90°至ED,連結(jié)AE,CE,則△ADE的面積是(

A.1
B.2
C.3
D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,平行于x軸的直線AC分別交拋物線y1=x2(x≥0)與y2= (x≥0)于B、C兩點(diǎn),過點(diǎn)C作y軸的平行線交y1于點(diǎn)D,直線DE∥AC,交y2于點(diǎn)E,則 =

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)班同學(xué)為了解某小區(qū)家庭月均用水情況,隨機(jī)調(diào)查了該小區(qū)部分家庭,并將調(diào)查數(shù)據(jù)整理如下表(部分):

月均用

水量x/m3

0<

x≤5

5<

x≤10

10<

x≤15

15<

x≤20

x>20

頻數(shù)/戶數(shù)

12

20

3

百分比

12%

7%

若該小區(qū)有800戶家庭,據(jù)此估計該小區(qū)月均用水量不超過10 m3的家庭有________戶.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)B、C分別在直線y=2x和y=kx上,點(diǎn)A、D是x軸上的兩點(diǎn),且四邊形ABCD是正方形.

(1)若正方形ABCD的邊長為2,則點(diǎn)B、C的坐標(biāo)分別為   

(2)若正方形ABCD的邊長為a,求k的值.

查看答案和解析>>

同步練習(xí)冊答案