【題目】如圖,已知正方形ABCD中,AB=4,點(diǎn)E,F在對(duì)角線BD上,AE∥CF.
(1)求證:△ABE≌△CDF;
(2)若∠ABE=2∠BAE,求DF的長(zhǎng).
【答案】(1)見(jiàn)解析;(2)DF=4﹣4.
【解析】
(1)利用平行線性質(zhì)和正方形的性質(zhì)可得∠AEB=∠CFD,∠ABE=∠CDF,AB=CD,則借助AAS可證明△ABE≌△CDF;
(2)過(guò)點(diǎn)E作HE⊥BE,交AB于H點(diǎn),證明∠HAE=∠HEA,得到AH=HE.設(shè)BE=DF=HE=AH=x,則HB=x.根據(jù)AB=4,構(gòu)造關(guān)于x的方程,解方程即可.
解:(1)∵AE∥CF,
∴∠AEF=∠CFB.
∴∠AEB=∠CFD.
∵四邊形ABCD是正方形,
∴∠ABE=∠CDF,AB=CD,
∴△ABE≌△CDF(AAS).
(2)過(guò)點(diǎn)E作HE⊥BE,交AB于H點(diǎn),
∴∠BHE=∠HBE=45°.
∵∠ABE=2∠BAE,
∴∠BHE=2∠BAE.
又∵∠BHE=∠HAE+∠AEH,
∴∠HAE=∠HEA.
∴AH=HE.
設(shè)BE=DF=HE=AH=x,
則HB=
∴=4,解得x=4﹣4.
∴DF=4﹣4.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀下列文字:我們知道對(duì)于一個(gè)圖形,通過(guò)不同的方法計(jì)算圖形的面積,可以得到一個(gè)數(shù)學(xué)等式,例如由圖1可以得到(a+2b)(a+b)= a2+3ab+2b2.請(qǐng)解答下列問(wèn)題:
(1)寫(xiě)出圖2中所表示的數(shù)學(xué)等式 ;
(2)利用(1)中所得到的結(jié)論,解決下面的問(wèn)題:已知a+b+c=9,ab+bc+ac=29,求a 2+b2+c2的值;
(3)小明同學(xué)打算用x張邊長(zhǎng)為a和y張邊長(zhǎng)為b的小正方形,z張相鄰兩邊長(zhǎng)分別為a、b的長(zhǎng)方形紙片拼出了一個(gè)面積為(3a+5b)(4a+7b)的長(zhǎng)方形,那么他總共需要多少?gòu)埣埰?/span>
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,平面直角坐標(biāo)系中,矩形OABC的邊與函數(shù)y=(x>0)圖象交于E,F(xiàn)兩點(diǎn),且F是BC的中點(diǎn),則四邊形ACFE的面積等于( 。
A. 4 B. 6 C. 8 D. 不能確定
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小明根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),對(duì)函數(shù)y=x+的圖象與性質(zhì)進(jìn)行了探究.
下面是小明的探究過(guò)程,請(qǐng)補(bǔ)充完整:
(1)函數(shù)y=x+的自變量x的取值范圍是_____.
(2)下表列出了y與x的幾組對(duì)應(yīng)值,請(qǐng)寫(xiě)出m,n的值:m=_____,n=_____;
x | … | ﹣3 | ﹣2 | ﹣1 | ﹣ | ﹣ | 1 | 2 | 3 | 4 | … | ||
y | … | ﹣ | ﹣ | ﹣2 | ﹣ | ﹣ | m | 2 | n | … |
(3)如圖,在平面直角坐標(biāo)系xOy中,描出了以上表中各對(duì)對(duì)應(yīng)值為坐標(biāo)的點(diǎn),根據(jù)描出的點(diǎn),畫(huà)出該函數(shù)的圖象;
(4)結(jié)合函數(shù)的圖象,請(qǐng)完成:
①當(dāng)y=﹣時(shí),x=_____.
②寫(xiě)出該函數(shù)的一條性質(zhì)_____.
③若方程x+=t有兩個(gè)不相等的實(shí)數(shù)根,則t的取值范圍是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】用適當(dāng)?shù)姆椒ń庀铝蟹匠蹋?/span>
(1)(6x-1)2=25;
(2)x2-2x=2x-1;
(3)x2-x=2;
(4)x(x-7)=8(7-x).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】將一副三角尺按如圖①方式拼接:含30°角的三角尺的長(zhǎng)直角邊與含45°角的三角尺的斜邊恰好重合(在Rt△ABC中,∠ACB=90°,∠BAC=30°;在Rt△ACD中,∠ADC=90°∠DAC=45°)已知AB=2,P是AC上的一個(gè)動(dòng)點(diǎn).
(1)當(dāng)PD=BC時(shí),求∠PDA的度數(shù);
(2)如圖②,若E是CD的中點(diǎn),求△DEP周長(zhǎng)的最小值;
(3)如圖③,當(dāng)DP平分∠ADC時(shí),在△ABC內(nèi)存在一點(diǎn)Q,使得∠DQC=∠DPC,且CQ=,求PQ的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】平面內(nèi)有一等腰直角三角板(∠ACB=90°)和一直線MN,過(guò)點(diǎn)C作CE⊥MN于點(diǎn)E,過(guò)點(diǎn)B作BF⊥MN于點(diǎn)F.當(dāng)點(diǎn)E與點(diǎn)A重合時(shí)(如圖①),易證:AF+BF=2CE;當(dāng)三角板繞點(diǎn)A順時(shí)針旋轉(zhuǎn)至圖②、圖③的位置時(shí),上述結(jié)論是否仍然成立?若成立,請(qǐng)給予證明;若不成立,線段AF、BF、CE之間又有怎樣的數(shù)量關(guān)系,請(qǐng)直接寫(xiě)出你的猜想,請(qǐng)直接寫(xiě)出你的猜想,不需證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,A點(diǎn)的坐標(biāo)為(﹣1,5),B點(diǎn)的坐標(biāo)為(3,3),C點(diǎn)的坐標(biāo)為(5,3),D點(diǎn)的坐 標(biāo)為(3,﹣1),小明發(fā)現(xiàn):線段AB與線段CD存在一種特殊關(guān)系,即其中一條線段繞著某點(diǎn)旋轉(zhuǎn)一個(gè)角度可以得到另一條線段,你認(rèn)為這個(gè)旋轉(zhuǎn)中心的坐標(biāo)是_____________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】解方程:
我們已經(jīng)學(xué)習(xí)了一元二次方程的多種解法:如因式分解法,開(kāi)平方法,配方法和公式法,還可以運(yùn)用十字相乘法,請(qǐng)從以下一元二次方程中任選兩個(gè),并選擇你認(rèn)為適當(dāng)?shù)姆椒ń膺@個(gè)方程.
①x2-4x-1=0,②x(2x+1)=8x-3,③x2+3x+1=0,④x2-9=4(x-3)
我選擇第幾個(gè)方程.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com