【題目】如圖, AD 為△ ABC 的中線, BE 為△ ABD 的中線.

(1)∠ ABE=15°,∠ BED=55°,求∠ BAD 的度數(shù);

(2)作△ BED 的邊 BD 邊上的高;

(3)若△ ABC 的面積為 20, BD=2.5,求△ BDE BD 邊上的高.

【答案】(1)∠BAD =40°;(2)詳見解析;(3)BD=2.5.

【解析】

(1)根據(jù)三角形的一個外角等于與它不相鄰的兩個內(nèi)角的和列式進行計算即可得解;

(2)根據(jù)高線的定義,過點EBD的垂線即可得解;

(3)根據(jù)三角形的中線把三角形分成的兩個三角形面積相等,先求出BDE的面積,再根據(jù)三角形的面積公式計算即可.

(1)在ABE中,∵∠ABE=15°,BAD=40°,

∴∠BED=ABE+BAD=15°+40°=55°;

(2)如圖,EFBD邊上的高;

(3)ADABC的中線,BEABD的中線,

SABD=SABC,SBDE=SABD,SBDE=

SABC

∵△ABC的面積為20,BD=2.5,

SBDE=BDEF=×5EF=×20,解得EF=2.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知直線y=3x﹣3分別交x軸,y軸于A,B兩點,拋物線y=x2+bx+c經(jīng)過A,B兩點,點C是拋物線與x軸的另一個交點(與A點不重合)

(1)求拋物線的解析式:

(2)在拋物線的對稱軸上是否存在點M,使△ABM周長最短?若存在,求出點M的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,平面直角坐標系中,點B0,﹣3),直線ly=﹣x+4上點A的橫坐標為2,把射線BA繞點B順時針旋轉(zhuǎn)45°,與直線l交于點C,則點C的坐標為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,∠B=90°,AB=6米,BC=8米,動點P2/秒得速度從A點出發(fā),沿ACC移動,同時,動點Q1/秒得速度從C點出發(fā),沿CBB移動。當(dāng)其中有一點到達終點時,他們都停止移動,設(shè)移動的時間為t秒。

(1)求CPQ的面積S(平方米)關(guān)于時間t(秒)的函數(shù)關(guān)系式;

(2)在P、Q移動的過程中,當(dāng)CPQ為等腰三角形時,求出t的值;

(3)以P為圓心,PA為半徑的圓與以Q為圓心,QC為半徑的圓相切時,求出t的值。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖(1),AB=4cmACAB,BDAB,AC=BD=3cm,點P在線段AB上以1cm/s的速度由點A向點B運動,同時,點Q在線段BD上由點B向點D運動,他們的運動時間為t(s).

1)若點Q的運動速度與點P的運動速度相等,當(dāng)t=1時,ACPBPQ是否全等,請說明理由

2)判斷此時線段PC和線段PQ的關(guān)系,并說明理由。

3)如圖(2),將圖(1)中的“ACAB,BDAB”改為“∠CAB=DBA=60°”,其他條件不變,設(shè)點Q的運動速度為x cm/s,是否存在實數(shù)x,使得ACPBPQ全等?若存在,求出相應(yīng)的xt的值;若不存在,請說明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)現(xiàn)有學(xué)生2650人,學(xué)校為了進一步了解學(xué)生課余生活,組織調(diào)查各興趣小組活動情況,為此校學(xué)生會進行了一次隨機抽樣調(diào)查,根據(jù)采集到的數(shù)據(jù),繪制如下兩個統(tǒng)計圖(不完整)

請你根據(jù)兩個統(tǒng)計圖中提供的信息,解答下列問題:

(1)這次抽樣調(diào)查的樣本容量是多少?在圖2中,請將條形統(tǒng)計圖中的“體育”部分的圖形補充完整;

(2)愛好“書畫”的人數(shù)占被調(diào)查人數(shù)的百分數(shù)是多少?估計該中學(xué)現(xiàn)有的學(xué)生中,愛好“書畫”的人數(shù);

(3)求愛好“音樂”的人數(shù)對應(yīng)扇形圓心角的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在四邊形ABCD中,點E為AB邊上的一點,點F為對角線BD上的一點,且EF⊥AB.

(1)若四邊形ABCD為正方形.

如圖1,請直接寫出AE與DF的數(shù)量關(guān)系   ;

EBF繞點B逆時針旋轉(zhuǎn)到圖2所示的位置,連接AE,DF,猜想AE與DF的數(shù)量關(guān)系并說明理由.

(2)若四邊形ABCD為矩形,BC=mAB,其他條件都不變.

如圖3,猜想AE與DF的數(shù)量關(guān)系并說明理由;

EBF繞點B順時針旋轉(zhuǎn)α(0°<α<90°)得到E′BF′,連接AE′,DF′,請在圖4中畫出草圖,并直接寫出AE′和DF′的數(shù)量關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知RtABCACB=90°,AC=BC,D是線段AB上的一點不與AB重合).過點BBECD,垂足為E將線段CE繞點C順時針旋轉(zhuǎn),得到線段CF連結(jié)EF設(shè)BCE度數(shù)為.

1補全圖形;

試用含的代數(shù)式表示CDA

2 的大。

3直接寫出線段AB、BE、CF之間的數(shù)量關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標系中,等邊三角形OAB的頂點A的坐標為(5,0),頂點B在第一象限,函數(shù)y=(x>0)的圖象分別交邊OA、AB于點C、D.若OC=2AD,則k=_____

查看答案和解析>>

同步練習(xí)冊答案