閱讀下列問題:
從甲地到乙地有兩條公路:一條是全長600km的普通公路,另一條是全長480km的高速公路.某客車在高速公路上行駛的平均速度比在普通公路上快45km/h,且在高速公路上從甲地到乙地所需的時間是在普通公路上從甲地到乙地所需時間的一半,求該客車在高速公路從甲地到乙地所需的時間.
(1)請用文字寫出這個問題中的等量關(guān)系;
(2)解答這個問題.
分析:本題依據(jù)題意先得出等量關(guān)系:客車由高速公路從A地到B的速度=客車由普通公路的速度+45,列出方程,解出檢驗并作答.
解答:解:(1)等量關(guān)系為:客車由高速公路從A地到B的速度=客車由普通公路的速度+45;
(2)設(shè)客車由高速公路從甲地到乙地需x小時,則走普通公路需2x小時,
根據(jù)題意得:
600
2x
+45=
480
x
,
解得x=4,
經(jīng)檢驗,x=4原方程的根.
答:客車由高速公路從甲地到乙地需4小時.
點評:本題主要考查分式方程的應(yīng)用,找到關(guān)鍵描述語,找到合適的等量關(guān)系是解決問題的關(guān)鍵.根據(jù)速度=路程÷時間列出相關(guān)的等式,解答即可.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

21、閱讀并解答
看下面的問題:
從甲地到乙地,可以乘火車,也可以乘汽車.一天中,火車有3班,汽車有2班.那么一天中,乘坐這些交通工具從甲地到乙地共有多少種不同的走法?
因為一天中乘火車有3種走法,乘汽車有2種走法,每一種走法都可以從甲地到乙地,所以共有   3+2=5種不同的走法.
一般地,有如下原理:
分類計數(shù)原理:完成一件事,在第1類辦法中有m1種不同的方法,在第2類辦法中有m2種不同的方法…在第n類辦法中有mn種不同的方法.那么完成這件事共有N=m1+m2+…+mn種不同的方法.
再看下面的問題:
從甲地到乙地,要從甲地先乘火車到丙地,再于次日從丙地乘汽車到乙地.一天中,火車有3班,汽車有2班,那么兩天中,從甲地到乙地共有多少種不同的走法?
這個問題與前一問題不同.在前一問題中,采用乘火車或乘汽車中的任何一種方式,都可以從甲地到乙地.而在這個問題中,必須經(jīng)過先乘火車、后乘汽車兩個步驟,才能從甲地到達乙地.
這里,因為乘火車有3種走法,乘汽車有2種走法,所以乘一次火車再接乘一次汽車從甲地到乙地,共有  3×2=6種不同的走法.
一般地,有如下原理:
分步計數(shù)原理:完成一件事,需要分成n個步驟,做第1步有m1種不同的方法,做第2步有m2種不同的方法…做第n步有mn種不同的方法.那么完成這件事共有
N=m1×m2×…×mn種不同的方法.
例:書架的第1層放有4本不同的計算機書,第2層放有3本不同的文藝書,第3層放有2本不同的體育書.
(1)從書架上任取1本書,有多少種不同的取法?
(2)從書架的第1、2、3層各取1本書,有多少種不同的取法?
解:(1)從書架上任取1本書,有3類辦法:第1類辦法是從第1層取1本計算機書,有4種方法;第2類辦法是從第2層取1本文藝書,有3種方法;第3類辦法是從第3層取1本體育書,有2種方法.根據(jù)分類計數(shù)原理,不同取法的種數(shù)是
N=m1+m2+m3=4+3+2=9
答:從書架上任取1本書,有9種不同的取法.
(2)從書架的第1、2、3層各取1本書,可以分成3個步驟完成:第1步從第1層取1本計算機書,有4種方法;第2步從第2層取1本文藝書,有3種方法;第3步從第3層取1本體育書,有2種取法.根據(jù)分步計數(shù)原理,從書架的第1、2、3層各取1本書,不同取法的種數(shù)是N=m1×m2×m3=4×3×2=24
答:從書架的第1、2、3層各取1本書,有24種不同的取法.
完成下列填空:
(1)從5位同學(xué)中產(chǎn)生1名組長,1名副組長有
20
種不同的選法.
(2)如圖,一條電路在從A處到B處接通時,可以有
8
條不同的路線.
(3)用數(shù)字0、1、2、3、4、5組成
288
個沒有重復(fù)數(shù)字的六位奇數(shù).
(4)一種汽車牌照由2個英文字母后接4個數(shù)字組成,且2個英文字母不能相同,則不同牌照號碼的個數(shù)是
6500000

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

閱讀下列問題:
從甲地到乙地有兩條公路:一條是全長600km的普通公路,另一條是全長480km的高速公路.某客車在高速公路上行駛的平均速度比在普通公路上快45km/h,且在高速公路上從甲地到乙地所需的時間是在普通公路上從甲地到乙地所需時間的一半,求該客車在高速公路從甲地到乙地所需的時間.
(1)請用文字寫出這個問題中的等量關(guān)系;
(2)解答這個問題.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

閱讀并解答
看下面的問題:
從甲地到乙地,可以乘火車,也可以乘汽車.一天中,火車有3班,汽車有2班.那么一天中,乘坐這些交通工具從甲地到乙地共有多少種不同的走法?
因為一天中乘火車有3種走法,乘汽車有2種走法,每一種走法都可以從甲地到乙地,所以共有3+2=5種不同的走法.
一般地,有如下原理:
分類計數(shù)原理:完成一件事,在第1類辦法中有m1種不同的方法,在第2類辦法中有m2種不同的方法…在第n類辦法中有mn種不同的方法.那么完成這件事共有N=m1+m2+…+mn種不同的方法.
再看下面的問題:
從甲地到乙地,要從甲地先乘火車到丙地,再于次日從丙地乘汽車到乙地.一天中,火車有3班,汽車有2班,那么兩天中,從甲地到乙地共有多少種不同的走法?
這個問題與前一問題不同.在前一問題中,采用乘火車或乘汽車中的任何一種方式,都可以從甲地到乙地.而在這個問題中,必須經(jīng)過先乘火車、后乘汽車兩個步驟,才能從甲地到達乙地.
這里,因為乘火車有3種走法,乘汽車有2種走法,所以乘一次火車再接乘一次汽車從甲地到乙地,共有  3×2=6種不同的走法.
一般地,有如下原理:
分步計數(shù)原理:完成一件事,需要分成n個步驟,做第1步有m1種不同的方法,做第2步有m2種不同的方法…做第n步有mn種不同的方法.那么完成這件事共有
N=m1×m2×…×mn種不同的方法.
例:書架的第1層放有4本不同的計算機書,第2層放有3本不同的文藝書,第3層放有2本不同的體育書.
(1)從書架上任取1本書,有多少種不同的取法?
(2)從書架的第1、2、3層各取1本書,有多少種不同的取法?
(1)從書架上任取1本書,有3類辦法:第1類辦法是從第1層取1本計算機書,有4種方法;第2類辦法是從第2層取1本文藝書,有3種方法;第3類辦法是從第3層取1本體育書,有2種方法.根據(jù)分類計數(shù)原理,不同取法的種數(shù)是
N=m1+m2+m3=4+3+2=9
答:從書架上任取1本書,有9種不同的取法.
(2)從書架的第1、2、3層各取1本書,可以分成3個步驟完成:第1步從第1層取1本計算機書,有4種方法;第2步從第2層取1本文藝書,有3種方法;第3步從第3層取1本體育書,有2種取法.根據(jù)分步計數(shù)原理,從書架的第1、2、3層各取1本書,不同取法的種數(shù)是N=m1×m2×m3=4×3×2=24
答:從書架的第1、2、3層各取1本書,有24種不同的取法.
完成下列填空:
(1)從5位同學(xué)中產(chǎn)生1名組長,1名副組長有______種不同的選法.
(2)如圖,一條電路在從A處到B處接通時,可以有______條不同的路線.
(3)用數(shù)字0、1、2、3、4、5組成______個沒有重復(fù)數(shù)字的六位奇數(shù).
(4)一種汽車牌照由2個英文字母后接4個數(shù)字組成,且2個英文字母不能相同,則不同牌照號碼
精英家教網(wǎng)
的個數(shù)是______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2004年江蘇省蘇州市昆山市高中實驗班招生考試數(shù)學(xué)試卷(解析版) 題型:解答題

閱讀并解答
看下面的問題:
從甲地到乙地,可以乘火車,也可以乘汽車.一天中,火車有3班,汽車有2班.那么一天中,乘坐這些交通工具從甲地到乙地共有多少種不同的走法?
因為一天中乘火車有3種走法,乘汽車有2種走法,每一種走法都可以從甲地到乙地,所以共有3+2=5種不同的走法.
一般地,有如下原理:
分類計數(shù)原理:完成一件事,在第1類辦法中有m1種不同的方法,在第2類辦法中有m2種不同的方法…在第n類辦法中有mn種不同的方法.那么完成這件事共有N=m1+m2+…+mn種不同的方法.
再看下面的問題:
從甲地到乙地,要從甲地先乘火車到丙地,再于次日從丙地乘汽車到乙地.一天中,火車有3班,汽車有2班,那么兩天中,從甲地到乙地共有多少種不同的走法?
這個問題與前一問題不同.在前一問題中,采用乘火車或乘汽車中的任何一種方式,都可以從甲地到乙地.而在這個問題中,必須經(jīng)過先乘火車、后乘汽車兩個步驟,才能從甲地到達乙地.
這里,因為乘火車有3種走法,乘汽車有2種走法,所以乘一次火車再接乘一次汽車從甲地到乙地,共有  3×2=6種不同的走法.
一般地,有如下原理:
分步計數(shù)原理:完成一件事,需要分成n個步驟,做第1步有m1種不同的方法,做第2步有m2種不同的方法…做第n步有mn種不同的方法.那么完成這件事共有
N=m1×m2×…×mn種不同的方法.
例:書架的第1層放有4本不同的計算機書,第2層放有3本不同的文藝書,第3層放有2本不同的體育書.
(1)從書架上任取1本書,有多少種不同的取法?
(2)從書架的第1、2、3層各取1本書,有多少種不同的取法?
解:(1)從書架上任取1本書,有3類辦法:第1類辦法是從第1層取1本計算機書,有4種方法;第2類辦法是從第2層取1本文藝書,有3種方法;第3類辦法是從第3層取1本體育書,有2種方法.根據(jù)分類計數(shù)原理,不同取法的種數(shù)是
N=m1+m2+m3=4+3+2=9
答:從書架上任取1本書,有9種不同的取法.
(2)從書架的第1、2、3層各取1本書,可以分成3個步驟完成:第1步從第1層取1本計算機書,有4種方法;第2步從第2層取1本文藝書,有3種方法;第3步從第3層取1本體育書,有2種取法.根據(jù)分步計數(shù)原理,從書架的第1、2、3層各取1本書,不同取法的種數(shù)是N=m1×m2×m3=4×3×2=24
答:從書架的第1、2、3層各取1本書,有24種不同的取法.
完成下列填空:
(1)從5位同學(xué)中產(chǎn)生1名組長,1名副組長有______種不同的選法.
(2)如圖,一條電路在從A處到B處接通時,可以有______條不同的路線.
(3)用數(shù)字0、1、2、3、4、5組成______個沒有重復(fù)數(shù)字的六位奇數(shù).
(4)一種汽車牌照由2個英文字母后接4個數(shù)字組成,且2個英文字母不能相同,則不同牌照號碼的個數(shù)是______.

查看答案和解析>>

同步練習(xí)冊答案