如圖,O為矩形ABCD對角線的交點,DE∥AC,CE∥BD.
(1)求證:四邊形OCED是菱形.
(2)若AB=6,BC=8,求四邊形OCED的周長.

(1)證明:∵四邊形ABCD是矩形,
∴AC=2OC,BD=2OD,AC=BD,
∴OD=OC,
∵DE∥AC,CE∥BD,
∴四邊形OCED是菱形.

(2)解:∵四邊形ABCD是矩形,
∴∠ABC=90°,
∵AB=6,BC=8,
∴在Rt△ABC中,由勾股定理得:AC=10,
即OC=AC=5,
∵四邊形OCED是菱形,
∴OC=OD=DE=CE=5,
∴四邊形OCED的周長是5+5+5+5=20.
分析:(1)根據(jù)矩形性質求出OC=OD,根據(jù)平行四邊形的判定得出四邊形OCED是平行四邊形,根據(jù)菱形判定推出即可;
(2)根據(jù)勾股定理求出AC,求出OC,得出OC=OD=CE=ED=5,相加即可.
點評:本題考查了勾股定理,平行四邊形的判定,菱形的判定和性質,矩形的性質的應用,主要考查學生的推理能力.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

26、如圖,在等邊△ABC中,點D是BC邊的中點,以AD為邊作等邊△ADE.
(1)求∠CAE的度數(shù);
(2)取AB邊的中點F,連接CF、CE,試證明四邊形AFCE是矩形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,等邊三角形ABC,邊長為2,AD是BC邊上的高.
(1)在△ABC內部作一個矩形EFGH(如圖1),其中E、H分別在邊AB、AC上,F(xiàn)G在邊BC上.
①設矩形的一邊FG=x,那么EF=
 
.(用含有x的代數(shù)式表示)
②設矩形的面積為y,當x取何值時,y的值最大,最大值是多少?
(2)在圖2中,只用圓規(guī)畫出點E,使得上述矩形EFGH面積最大.寫出畫法,并保留作圖痕跡.
精英家教網

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

定義:只有一組對角是直角的四邊形叫做損矩形,連接它的兩個非直角頂點的線段叫做這個損矩形的直徑.
(1)如圖1,損矩形ABCD,∠ABC=∠ADC=90°,則該損矩形的直徑是線段
 

(2)在線段AC上確定一點P,使損矩形的四個頂點都在以P為圓心的同一圓上(即損矩形的四個頂點在同一個圓上),請作出這個圓,并說明你的理由.友情提醒:“尺規(guī)作圖”不要求寫作法,但要保留作圖痕跡.
(3)如圖2,△ABC中,∠ABC=90°,以AC為一邊向形外作菱形ACEF,D為菱形ACEF的中心,連接BD,當BD平分∠ABC時,判斷四邊形ACEF為何種特殊的四邊形?請說明理由.若此時AB=3,BD=4
2
,求BC的長.
精英家教網精英家教網

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,四邊形DEFG是△ABC的內接矩形,如果△ABC的高線AH長8cm,底邊BC長10cm,設DG=xcm,DE=ycm,則y關于x的函數(shù)關系式為
y=-
4
5
x+8
y=-
4
5
x+8

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(1)如圖1,在平行四邊形ABCD中,E、F為BC上兩點,且BE=CF,AF=DE.
求證:①△ABF≌△DCE;②四邊形ABCD是矩形.
(2)如圖2,已知△ABC是等邊三角形,D點是AC的中點,延長BC到E,使CE=CD.
①請用尺規(guī)作圖的方法,過點D作DM⊥BE,垂足為M;(不寫作法,保留作圖痕跡)
②求證:BM=EM.

查看答案和解析>>

同步練習冊答案