【題目】△ABC和△EFG是兩塊完全重合的等邊三角形紙片,(如圖①所示)O是AB(或EF)的中點,△ABC不動,將△EFG繞O點順時針轉(zhuǎn)α﹝0°<α<120°﹞角.
(1)試分別說明α為多少度時,點F在△ABC外部、BC上、內(nèi)部(不證明)?
(2)當(dāng)點F不在BC上時,在圖②、圖③兩種情況下(設(shè)EF或延長線與BC交于P,EG與CA或延長線交于Q),分別寫出OP與OQ的數(shù)量關(guān)系,并將圖③情況給予說明.
【答案】(1)當(dāng)0°<α<60°,點F在△ABC的外部;當(dāng)α=60°,點F在BC的中點;當(dāng)60°<α<120°,點F在△ABC的內(nèi)部;(2)兩種情況下均有OP=OQ;證明見解析
【解析】
(1)按照α=60°,0<α<60°,60°<α<120°分類說明;
(2)利用ASA,尋找證明三角形全等的條件.
解:(1)當(dāng)α=60°時,如圖④,
∵∠COF=60°,O為AC,EF的中點,
∴OF=OC,
∴△COF是等邊三角形,
∴∠OCF=∠ACB=60°,
∴點F在BC邊上,
當(dāng)α=120°時,如圖⑤,則∠AOF=60°,
∵O為AC,EF的中點,
∴OF=AO,
∴△AOF為等邊三角形,
∴∠OAF=∠CAB=60°,
∴點F在AB邊上,
∴當(dāng)0°<α<60°,點F在△ABC的外部,
當(dāng)α=60°,點F在BC的中點,
當(dāng)60°<α<120°,點F在△ABC的內(nèi)部;
(2)兩種情況下均有OP=OQ;
證明:如圖③,由題意可知:∠E=∠C=60°,OE=OC=AC,∠EOQ=∠COP,
∴△EOQ≌△COP(ASA),
∴OP=OQ.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖1,△ABC和△CDE均為等邊三角形,直線AD和直線BE交于點F.
①求證: AD=BE:
②求∠AFB的度數(shù).
(2)如圖2, △ABC和△CDE均為等腰直角三角形,∠ABC= ∠DEC=90°,直線AD和直線BE交于點F.
①求證: AD= BE:;
②若AB=BC=3, DE=EC= 2,將△CDE繞著點C在平面內(nèi)旋轉(zhuǎn),當(dāng)點D落在線段BC上時,在圖3中畫出圖形,并求BF的長度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某工程隊承接一鐵路工程,在挖掘一條500米長的隧道時,為了盡快完成,實際施工時每天挖掘的長度是原計劃的1.5倍,結(jié)果提前了25天完成了其中300米的隧道挖掘任務(wù).
(1)求實際每天挖掘多少米?
(2)由于氣候等原因,需要進(jìn)一步縮短工期,要求完成整條隧道不超過70天,那么為了完成剩下的任務(wù),在實際每天挖掘長度的基礎(chǔ)上,至少每天還應(yīng)多挖掘多少米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)中,,,,,,的圓心在軸上,且半徑均為,的坐標(biāo)為,坐標(biāo)為,坐標(biāo)為,坐標(biāo)為射線與相切于點,射線與相切于點,按照這樣的規(guī)律,的橫坐標(biāo)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小亮和爸爸登山,兩人距地面的高度(米)與小亮登山時間(分)之間的函數(shù)圖象分別如圖中折線和線段所示,根據(jù)函數(shù)圖形進(jìn)行一下探究:
(1)設(shè)線段所表示的函數(shù)關(guān)系式為,根據(jù)圖象求的值,并寫出的實際意義;
(2)若小亮提速后,他登山的速度是爸爸速度的3倍,問:小亮登山多長時間時開始提速?此時小亮距地面的高度是多少米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線l1:y=﹣x與反比例函數(shù)y=的圖象交于A,B兩點(點A在點B左側(cè)),已知A點的縱坐標(biāo)是2:
(1)求反比例函數(shù)的表達(dá)式;
(2)將直線l1:y=﹣x向上平移后的直線l2與反比例函數(shù)y=在第二象限內(nèi)交于點C,如果△ABC的面積為30,求平移后的直線l2的函數(shù)表達(dá)式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在⊙O中,點C為 的中點,∠ACB=120°,OC的延長線與AD交于點D,且∠D=∠B.
(1)求證:AD與⊙O相切;
(2)若CE=4,求弦AB的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABD中,AB=AD,AB是⊙O的直徑,DA、DB分別交⊙O于點E、C,連接EC,OE,OC.
(1)當(dāng)∠BAD是銳角時,求證:△OBC≌△OEC;
(2)填空:
①若AB=2,則△AOE的最大面積為 ;
②當(dāng)DA與⊙O相切時,若AB=,則AC的長為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某文具店購進(jìn)一批紀(jì)念冊,每本進(jìn)價為20元,出于營銷考慮,要求每本紀(jì)念冊的售價不低于20元且不高于28元,在銷售過程中發(fā)現(xiàn)該紀(jì)念冊每周的銷售量y(本)與每本紀(jì)念冊的售價x(元)之間滿足一次函數(shù)關(guān)系:當(dāng)銷售單價為22元時,銷售量為36本;當(dāng)銷售單價為24元時,銷售量為32本.
(1)求出y與x的函數(shù)關(guān)系式;
(2)當(dāng)文具店每周銷售這種紀(jì)念冊獲得150元的利潤時,每本紀(jì)念冊的銷售單價是多少元?
(3)設(shè)該文具店每周銷售這種紀(jì)念冊所獲得的利潤為w元,將該紀(jì)念冊銷售單價定為多少元時,才能使文具店銷售該紀(jì)念冊所獲利潤最大?最大利潤是多少?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com