(2012•眉山)如圖,平行四邊形ABCD中,AB=5,AD=3,AE平分∠DAB交BC的延長線于F點,則CF=
2
2
分析:根據(jù)角平分線的定義可得∠1=∠2,再根據(jù)兩直線平行,內(nèi)錯角相等可得∠2=∠3,∠1=∠F,然后求出∠1=∠3,∠4=∠F,再根據(jù)等角對等邊的性質(zhì)可得AD=DE,CE=CF,根據(jù)平行四邊形對邊相等代入數(shù)據(jù)計算即可得解.
解答:解:如圖,∵AE平分∠DAB,
∴∠1=∠2,
平行四邊形ABCD中,AB∥CD,AD∥BC,
∴∠2=∠3,∠1=∠F,
又∵∠3=∠4(對頂角相等),
∴∠1=∠3,∠4=∠F,
∴AD=DE,CE=CF,
∵AB=5,AD=3,
∴CE=DC-DE=AB-AD=5-3=2,
∴CF=2.
故答案為:2.
點評:本題考查了平行四邊形對邊相等,對邊平行的性質(zhì),角平分線的定義,平行線的性質(zhì),比較簡單,熟記性質(zhì)是解題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2012•眉山)如圖,在△ABC中,∠ACB=90°,∠A=20°,若將△ABC沿CD折疊,使B點落在AC邊上的E處,則∠ADE的度數(shù)是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•眉山)已知:如圖,在直角坐標(biāo)系中,有菱形OABC,A點的坐標(biāo)為(10,0),對角線OB、AC相交于D點,雙曲線y=
k
x
(x>0)經(jīng)過D點,交BC的延長線于E點,且OB•AC=160,有下列四個結(jié)論:
①雙曲線的解析式為y=
20
x
(x>0);
②E點的坐標(biāo)是(4,8);
③sin∠COA=
4
5

④AC+OB=12
5
,其中正確的結(jié)論有(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•眉山)如圖,圖中的小方格都是邊長為1的正方形,△ABC的頂點坐標(biāo)分別為A(-3,0),B(-1,-2),C(-2,2).
(1)請在圖中畫出△ABC繞B點順時針旋轉(zhuǎn)180°后的圖形;
(2)請直接寫出以A、B、C為頂點的平行四邊形的第四個頂點D的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•眉山)如圖,在與河對岸平行的南岸邊有A、B、D三點,A、B、D三點在同一直線上,在A點處測得河對岸C點在北偏東60°方向;從A點沿河邊前進(jìn)200米到達(dá)B點,這時測得C點在北偏東30°方向,求河寬CD.

查看答案和解析>>

同步練習(xí)冊答案