【題目】小聰和小慧去某風(fēng)景區(qū)游覽,兩人在景點古剎處碰面,相約一起去游覽景點飛瀑,小聰騎自行車先行出發(fā),小慧乘電動車出發(fā),途徑草甸游玩后,再乘電動車去飛瀑,結(jié)果兩人同時到達飛瀑.圖中線段和折線表示小聰、小慧離古剎的路程(米)與小聰?shù)尿T行時間(分)的函數(shù)關(guān)系的圖象,根據(jù)圖中所給信息,解答下列問題:

1)小聰?shù)乃俣仁嵌嗌倜?/span>/分?從古剎到飛瀑的路程是多少米?

2)當(dāng)小慧第一次與小聰相遇時,小慧離草甸還有多少米?

3)在電動車行駛速度不變的條件下,求小慧在草甸游玩的時間.

【答案】1180,9000;(2)小慧與小聰?shù)谝淮蜗嘤鰰r,離草甸還有1500米;(320分鐘.

【解析】

(1)根據(jù)路程÷事件=速度,代入即可求出小聰?shù)乃俣?/span>,再利用公式速度×?xí)r間求出路程即可.

(2)先利用待定系數(shù)法解出小慧的速度直線表達式,x=20代入解出y的值與3000相減即可得到答案.

(3)用總時間減去到達草甸的時間和離開草甸到飛瀑的時間即可得到游玩時間.

1/.

古剎到飛瀑的路程

2)設(shè)解得

當(dāng),

答:小慧與小聰?shù)谝淮蜗嘤鰰r,離草甸還有1500米。

3

.

答:20分鐘.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD中,∠A=∠B=90°,E是AB上一點,且AE=BC,∠1=∠2.

(1)證明:AB=AD+BC;

(2)判斷△CDE的形狀?并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】商店只有雪碧、可樂、果汁、奶汁四種飲料,每種飲料數(shù)量充足,某同學(xué)去該店購買飲料,每種飲料被選中的可能性相同.

1)若他去買一瓶飲料,則他買到奶汁的概率是 ;

2)若他兩次去買飲料,每次買一瓶,且兩次所買飲料品種不同,請用樹狀圖或列表法求出他恰好買到雪碧和奶汁的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的方程x2﹣2(m+1)x+m2+2=0.

(1)若方程總有兩個實數(shù)根,求m的取值范圍;

(2)若方程有一個實數(shù)根為1,求m的值和另一個根.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如果拋物線y=-x2bxc經(jīng)過A(0,-2),B(1,1)兩點,那么此拋物線經(jīng)過

A. 第一、二、三、四象限 B. 第一、二、三象限

C. 第一、二、四象限 D. 第二、三、四象限

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一條公路旁依次有、、三個村莊,甲、乙兩人騎自行車分別從村、村同時出發(fā)前往村,甲、乙之間的距離與騎行時間之間的函數(shù)關(guān)系如圖所示,下列結(jié)論:

、兩村相距

②甲出發(fā)后到達村;

③甲每小時比乙我騎行

④相遇后,乙又騎行了時兩人相距.

其中正確結(jié)論的個數(shù)是(

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】工人師傅用一塊長為10dm,寬為6dm的矩形鐵皮制作一個無蓋的長方體容器,需要將四角各裁掉一個正方形.(厚度不計)

(1)在圖中畫出裁剪示意圖,用實線表示裁剪線,虛線表示折痕;并求長方體底面面積為12dm2時,裁掉的正方形邊長多大?

(2)若要求制作的長方體的底面長不大于底面寬的五倍,并將容器進行防銹處理,側(cè)面每平方分米的費用為0.5元,底面每平方分米的費用為2元,裁掉的正方形邊長多大時,總費用最低,最低為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,AB=AC,點MABC內(nèi),AM平分BAC.D與點MAC所在直線的兩側(cè),ADAB,AD=BC,點EAC邊上,CE=AM,連接MD、BE.

1)補全圖形;

2)請判斷MDBE的數(shù)量關(guān)系,并進行證明;

3)點M在何處時,BM+BE會有最小值,畫出圖形確定點M的位置;如果AB=5BC=6,求出BM+BE的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)拋物線經(jīng)過點A (4,0),點B (1,-3) ,求該拋物線的解析式;

(2)如圖,要修建一個圓形噴水池,在池中心豎直安裝一根水管,在水管的頂端安一個噴水頭,使噴出的拋物線形水柱在與池中心的水平距離為1m處達到最高,高度為3m,水柱落地處離池中心3m,水管應(yīng)多長?

(3)如圖,點P>0),在軸正半軸上,過點P作平行于軸的直線,分別交拋物線于點A,B,交拋物線于點C,D,求的值.

查看答案和解析>>

同步練習(xí)冊答案