如圖,在平面直角坐標(biāo)系中,點(diǎn)A在x軸上,點(diǎn)B的坐標(biāo)為(4,2),若四邊形OABC為菱形,則點(diǎn)C的坐標(biāo)為________.


分析:首先由四邊形OABC是菱形,可得OC=OA=AB=BC,BC∥OA,然后過點(diǎn)B作BD⊥OA于D,并延長BC交y軸與點(diǎn)E,設(shè)AB=x,則OA=x,AD=4-x,在Rt△ABD中,利用勾股定理即可求得BC和OD的長,則可得C點(diǎn)的坐標(biāo).
解答:過點(diǎn)B作BD⊥OA于D,并延長BC交y軸與點(diǎn)E,

∵四邊形OABC是菱形,
∴OC=OA=AB=BC,BC∥OA,
設(shè)AB=x,則OA=x,AD=4-x,
在Rt△ABD中,AB2=AD2+BD2,
即x2=(4-x)2+22,
解得:x=
∴CE=BE-BC=OD-BC=4-=,
∴C點(diǎn)的坐標(biāo)為(,2).
故答案為:(,2).
點(diǎn)評(píng):此題考查了菱形的性質(zhì)、坐標(biāo)與圖形性質(zhì)及勾股定理的應(yīng)用,解題的關(guān)鍵是方程思想與數(shù)形結(jié)合思想的靈活應(yīng)用,難度一般.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在平面直角坐標(biāo)中,四邊形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,點(diǎn)P為x軸上的一個(gè)動(dòng)點(diǎn),但是點(diǎn)P不與點(diǎn)0、點(diǎn)A重合.連接CP,D點(diǎn)是線段AB上一點(diǎn),連接PD.
(1)求點(diǎn)B的坐標(biāo);
(2)當(dāng)∠CPD=∠OAB,且
BD
AB
=
5
8
,求這時(shí)點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•渝北區(qū)一模)如圖,在平面直角坐標(biāo)xoy中,以坐標(biāo)原點(diǎn)O為圓心,3為半徑畫圓,從此圓內(nèi)(包括邊界)的所有整數(shù)點(diǎn)(橫、縱坐標(biāo)均為整數(shù))中任意選取一個(gè)點(diǎn),其橫、縱坐標(biāo)之和為0的概率是
5
29
5
29

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)中,等腰梯形ABCD的下底在x軸上,且B點(diǎn)坐標(biāo)為(4,0),D點(diǎn)坐標(biāo)為(0,3),則AC長為
5
5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)xOy中,已知點(diǎn)A(-5,0),P是反比例函數(shù)y=
k
x
圖象上一點(diǎn),PA=OA,S△PAO=10,則反比例函數(shù)y=
k
x
的解析式為(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)中,四邊形OABC是等腰梯形,CB∥OA,OC=AB=4,BC=6,∠COA=45°,動(dòng)點(diǎn)P從點(diǎn)O出發(fā),在梯形OABC的邊上運(yùn)動(dòng),路徑為O→A→B→C,到達(dá)點(diǎn)C時(shí)停止.作直線CP.
(1)求梯形OABC的面積;
(2)當(dāng)直線CP把梯形OABC的面積分成相等的兩部分時(shí),求直線CP的解析式;
(3)當(dāng)△OCP是等腰三角形時(shí),請(qǐng)寫出點(diǎn)P的坐標(biāo)(不要求過程,只需寫出結(jié)果).

查看答案和解析>>

同步練習(xí)冊(cè)答案