已知△ABC中,AD是角平分線,AB=5,AC=3,且S△ADC=6,則S△ABD=________.

10
分析:題中有△ADC的面積,AC的長,可求出高DE,AD是角平分線,所以DE=DF,進而可求解△ABD的面積.
解答:解:如圖所示,
因為角平分線到角兩邊的距離相等,即DE=DF,
SADC=AC•DE=6,∴DE=4
SABD=AB•FD=×5×=10.
故填10.
點評:本題考查了角平分線的性質(zhì);要熟練掌握角平分線的性質(zhì),會求三角形的面積.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知△ABC中,AD平分∠BAC交BC于D,AE⊥BC于E,若∠ADE=80°,∠EAC=20°,求∠B的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知△ABC中,AD⊥BC,E為BC上一點,EG∥AD,分別交AB和CA的延長線于F、G,∠AFG=∠G,
(1)求證:△ABD≌△ACD;
(2)若∠B=40°,求∠G的大。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知△ABC中,AD是BC的垂直平分線,垂足為D,∠BAD=
12
∠B,則△ABC是
等邊
等邊
三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知△ABC中,AD是BC邊上的高,AE是∠BAC的角平分線,若∠C=40°,∠B=64°,求
∠DAE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知△ABC中,AD平分∠BAC交BC于點D,E是線段AD上一點,EF⊥BC于點F,∠DEF=15°.
(1)若∠BAC=100°,∠B<∠C,如圖所示,則∠B=
25°
25°
,∠C=
65°
65°

(2)若∠B+2∠C=120°,求△ABC的三個內(nèi)角.

查看答案和解析>>

同步練習(xí)冊答案