【題目】問(wèn)題背景:
如圖1,在四邊形ABCD中,AB=AD,∠BAD=120°,∠B=∠D=90°.E、F分別是BC、CD上的點(diǎn),且∠EAF=60°.為了探究圖中線段BE,EF,FD之間的數(shù)量關(guān)系,小紅的想法是:在EB的延長(zhǎng)線上取一點(diǎn)G,使得BG=DF,連接AG,證明△ABG≌△ADF;再證明△AGE≌△AFE,從而得到結(jié)論,她的結(jié)論是_____________.
探索延伸:
如圖2,若在四邊形ABCD中,AB=AD,∠B+∠D=180°.E、F分別是BC、CD上的點(diǎn),且∠EAF=∠BAD,上述結(jié)論是否仍然成立,并說(shuō)明理由.
實(shí)際應(yīng)用:
如圖3,在某次軍事演習(xí)中,艦艇甲在指揮中心(O處)北偏西40°的A處,艦艇乙在指揮中心南偏東80°的B處,并且兩艦艇到指揮中心的距離相等,接到行動(dòng)指令后,艦艇甲向正東方向以50海里/小時(shí)的速度,同時(shí)艦艇乙沿北偏東50°的方向以70海里/小時(shí)的速度各自前進(jìn)2小時(shí)后,在指揮中心觀測(cè)到甲、乙兩艦艇分別到達(dá)E,F處,兩艦艇與指揮中心之間的夾角為70°,則此時(shí)兩艦艇之間的距離為______海里.
【答案】問(wèn)題背景:EF=BE+DF;探索延伸:EF=BE+DF仍然成立;實(shí)際應(yīng)用:240海里.
【解析】
問(wèn)題背景:延長(zhǎng)FD到點(diǎn)G.使DG=BE.連結(jié)AG,即可證明△ABE≌△ADG,可得AE=AG,再證明△AEF≌△AGF,可得EF=FG,即可解題;
探索延伸:延長(zhǎng)FD到點(diǎn)G.使DG=BE.連結(jié)AG,即可證明△ABE≌△ADG,可得AE=AG,再證明△AEF≌△AGF,可得EF=FG,即可解題;
結(jié)論應(yīng)用:連接EF,延長(zhǎng)AE、BF相交于點(diǎn)C,然后與(2)同理可證;
解:?jiǎn)栴}背景:EF=BE+DF,證明如下:
在△ABE和△ADG中,
∴△ABE≌△ADG(SAS),
∴AE=AG,∠BAE=∠DAG,
∵∠EAF=∠BAD,
∴∠GAF=∠DAG+∠DAF=∠BAE+∠DAF=∠BAD-∠EAF=∠EAF,
∴∠EAF=∠GAF,
在△AEF和△GAF中,
∴△AEF≌△AGF(SAS),
∴EF=FG,
∵FG=DG+DF=BE+DF,
∴EF=BE+DF;
故答案為:EF=BE+DF;
探索延伸:結(jié)論EF=BE+DF仍然成立;
理由:延長(zhǎng)FD到點(diǎn)P.使DP=BE.連結(jié)AP,如圖2,
在△ABE和△ADP中,
∴△ABE≌△ADP(SAS),
∴AE=AP,∠BAE=∠DAP,
∵∠EAF=∠BAD,
∴∠PAF=∠DAP+∠DAF=∠BAE+∠DAF=∠BAD-∠EAF=∠EAF,
∴∠EAF=∠PAF,
在△AEF和△PAF中,
∴△AEF≌△APF(SAS),
∴EF=FP,
∵FP=DP+DF=BE+DF,
∴EF=BE+DF;
結(jié)論應(yīng)用:如圖3,連接EF,延長(zhǎng)AE、BF相交于點(diǎn)C,
∵∠AOB=40°+90°+(90°-80°)=140°,∠EOF=70°,
∴∠EOF=∠AOB,
又∵OA=OB,∠OAC+∠OBC=(90°-40°)+(80°+50°)=180°,
∴符合探索延伸中的條件,
∴結(jié)論EF=AE+BF成立,
即EF=2×(50+70)=240海里.
答:此時(shí)兩艦艇之間的距離是240海;
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商場(chǎng)舉行開(kāi)業(yè)酬賓活動(dòng),設(shè)立了兩個(gè)可以自由轉(zhuǎn)動(dòng)的轉(zhuǎn)盤(pán)(如圖所示,兩個(gè)轉(zhuǎn)盤(pán)均被等分),并規(guī)定:顧客購(gòu)買(mǎi)滿(mǎn)188元的商品,即可任選一個(gè)轉(zhuǎn)盤(pán)轉(zhuǎn)動(dòng)一次,轉(zhuǎn)盤(pán)停止后,指針?biāo)竻^(qū)域內(nèi)容即為優(yōu)惠方式;若指針?biāo)竻^(qū)域空白,則無(wú)優(yōu)惠.已知小張?jiān)谠撋虉?chǎng)消費(fèi)300元
(1)若他選擇轉(zhuǎn)動(dòng)轉(zhuǎn)盤(pán)1,則他能得到優(yōu)惠的概率為多少?
(2)選擇轉(zhuǎn)動(dòng)轉(zhuǎn)盤(pán)1和轉(zhuǎn)盤(pán)2,哪種方式對(duì)于小張更合算,請(qǐng)通過(guò)計(jì)算加以說(shuō)明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,在Rt中,∠BAC=90°且AB=AC,D是邊BC上一點(diǎn),E是邊AC上一點(diǎn),AD=AE,若為等腰三角形,則∠CDE的度數(shù)為____________
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知△ABC三個(gè)內(nèi)角的平分線交于點(diǎn)O,點(diǎn)D在CA的延長(zhǎng)線上,且DC=BC,AD=AO,若∠BAC=80°,則∠BCA的度數(shù)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在中,平分交于點(diǎn),點(diǎn)分別是和上的動(dòng)點(diǎn),當(dāng),時(shí),的最小值等于__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】規(guī)定兩數(shù)之間的一種運(yùn)算,記作();如果,那么(),例如因?yàn)?/span>,所以(2,8)=3.
(1)根據(jù)上述規(guī)定,填空:(4,16)= ,(7,1)= ,( ,81)=4.
(2)小明在研究這種運(yùn)算時(shí)發(fā)現(xiàn)一個(gè)現(xiàn)象,(,)=(3,4),小明給出了如下的證明:
設(shè)(,),所以,即,所以,
即(3,4),所以(,)=(3,4),請(qǐng)你嘗試運(yùn)用這種方法解決下列問(wèn)題:
①證明:(6,45)-(6,9)=(6,5)
②猜想:(,)+(,)=( , )(結(jié)果化成最簡(jiǎn)形式)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,用棋子擺成的“上”字:
第一個(gè)“上”字 第二個(gè)“上”字 第三個(gè)“上”字
如果按照以上規(guī)律繼續(xù)擺下去,那么通過(guò)觀察,可以發(fā)現(xiàn):
(1)第四、第五個(gè)“上”字分別需用 和 枚棋子.
(2)第n個(gè)“上”字需用 枚棋子.
(3)如果某一圖形共有102枚棋子,你知道它是第幾個(gè)“上”字嗎?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠BAC=90°,AB=AC,D在AC上,E在BA的延長(zhǎng)線上,BD=CE,BD的延長(zhǎng)線交CE于點(diǎn)F。求證:BF⊥CE。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com