【題目】已知平面直角坐標(biāo)系xOy(如圖),直線 y=x+b經(jīng)過第一、二、三象限,與y軸交于點(diǎn)B,點(diǎn)A(2,t)在直線y=x+b上,連結(jié)AO,△AOB的面積等于1.

(1)求b的值;

(2)如果反比例函數(shù)y= (k是常量,k≠0)的圖象經(jīng)過點(diǎn)A,求這個(gè)反比例函數(shù)的表達(dá)式.

【答案】(1)1(2)y=

【解析】試題分析:(1)連接OA,過AAC垂直于y軸,由A的橫坐標(biāo)為2得到AC=2,對(duì)于直線解析式,令y=0求出x的值,表示出OB的長,三角形AOB面積以OB為底,AC為高表示出來,根據(jù)已知三角形的面積求出OB的長,確定出B坐標(biāo),代入一次函數(shù)解析式中即可求出b的值;

2)將A坐標(biāo)代入一次函數(shù)求出t的值,確定出A坐標(biāo),將A坐標(biāo)代入反比例解析式中求出k的值,即可確定出反比例解析式.

試題解析:解:(1)過AACy軸,A2,t),AC=2,對(duì)于直線y=x+b,令x=0,得到y=b,即OB=b,SAOB=OBAC=OB=1,b=1;

2)由b=1,得到直線解析式為y=x+1,將A2,t)代入直線解析式得:t=1+1=2,即A22),把A22)代入反比例解析式得:k=4,則反比例解析式為y=

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,ABCD,分別以AB,AD為邊向外作等邊ABE,ADF,延長CBAE于點(diǎn)G,點(diǎn)G在點(diǎn)A,E之間,連接CG,CF,則下列結(jié)論不一定正確的是( )

A. CDF≌△EBC

B. CDF=EAF

C. CGAE

D. ECF是等邊三角形

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,O為原點(diǎn),一次函數(shù)y1=x+m與反比例函數(shù)y2=的圖象相交于A21),Bn,﹣2)兩點(diǎn),與x軸交于點(diǎn)C

1)求反比例函數(shù)解析式和點(diǎn)B坐標(biāo);

2)當(dāng)x的取值范圍是 時(shí),有y1y2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明同學(xué)參加“獻(xiàn)愛心”活動(dòng),買了2元一注的愛心福利彩票5注,則“小明中獎(jiǎng)”的事件為 事件(填“必然”或“不可能”或“隨機(jī)”).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如果向東走5m,記作+5m;那么向西走10m,記作______m.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(12)(2017·黃岡)已知:如圖一次函數(shù)y=-2x1與反比例函數(shù)y的圖象有兩個(gè)交點(diǎn)A(1,m)B,過點(diǎn)AAEx垂足為E;過點(diǎn)BBDy垂足為點(diǎn)D,且點(diǎn)D的坐標(biāo)為(0,-2),連結(jié)DE.

(1)k的值;

(2)求四邊形AEDB的面積

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】鎮(zhèn)江某特產(chǎn)專賣店銷售某種特產(chǎn),其進(jìn)價(jià)為每千克40元,若按每千克60元出售,平均每天可售出100千克,經(jīng)過市場調(diào)查發(fā)現(xiàn),單價(jià)每降低3元,平均每天的銷售量可增加30千克,專賣店銷售這種特產(chǎn)若想要平均每天獲利2240元,且銷售盡可能大,則每千克特產(chǎn)應(yīng)定價(jià)為多少元?

1)解:方法1:設(shè)每千克特產(chǎn)應(yīng)降價(jià)x元,由題意,得方程為:_____;

方法2:設(shè)每千克特產(chǎn)降低后定價(jià)為x元,由題意,得方程為:_____

2)請你選擇一種方法,寫出完整的解答過程.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某公司為獎(jiǎng)勵(lì)在趣味運(yùn)動(dòng)會(huì)上取得好成績的員工,計(jì)劃購買甲、乙兩種獎(jiǎng)品共20件,其中甲種獎(jiǎng)品每件40元,乙種獎(jiǎng)品每件30元.

(1)如果購買甲、乙兩種獎(jiǎng)品共花費(fèi)了650元,求甲、乙兩種獎(jiǎng)品各購買了多少件;

(2)如果購買乙種獎(jiǎng)品的件數(shù)不超過甲種獎(jiǎng)品件數(shù)的2倍,總花費(fèi)不超過680元,求該公司有哪幾種不同的購買方案.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC為等邊三角形AECD,AD,BE相交于點(diǎn)PBQADQ,PQ3,PE1

1求證BEAD;

2AD的長

查看答案和解析>>

同步練習(xí)冊答案