如圖,在平行四邊形ABCD中,AE是BC邊上的高,將△ABE沿BC方向平移,使點E與點C重合,得△GFC.
(1)求證:BE=DG;
(2)若∠B=60°,當AB與BC滿足什么數(shù)量關系時,四邊形ABFG是菱形?證明你的結論;
(3)試探究,若∠B=60°時,當AB與BC滿足什么數(shù)量關系時,四邊形AECG是正方形(直接寫出結果).

(1)證明:∵四邊形ABCD是平行四邊形,
∴AB=CD.
∵AE是BC邊上的高,且CG是由AE沿BC方向平移而成.
∴CG⊥AD.
∴∠AEB=∠CGD=90°.
∵AE=CG,
∴Rt△ABE≌Rt△CDG.
∴BE=DG;

(2)解:當BC=AB時,四邊形ABFG是菱形.
證明:∵AB∥GF,AG∥BF,
∴四邊形ABFG是平行四邊形.
∵Rt△ABE中,∠B=60°,
∴∠BAE=30°,
∴BE=AB(直角三角形中30°所對直角邊等于斜邊的一半),
∵BE=CF,BC=AB,
∴EF=AB.
∴AB=BF.
∴四邊形ABFG是菱形;

(3)解:BC=AB時,四邊形AECG是正方形.
∵AE⊥BC,GC⊥CB,
∴AE∥GC,∠AEC=90°,
∵AG∥CE,
∴四邊形AECG是矩形,
當AE=EC時,矩形AECG是正方形,
∵∠B=60°,
∴EC=AE=AB•sin60°=AB,BE=AB,
∴BC=AB.
分析:(1)根據(jù)平移的性質,可得:BE=FC,再證明Rt△ABE≌Rt△CDG可得:DG=FC;即可得到BE=DG;
(2)要使四邊形ABFG是菱形,須使AB=BF;根據(jù)條件找到滿足AB=BF的AB與BC滿足的數(shù)量關系即可.
(3)當四邊形AECG是正方形時,AE=EC,由AE=AB,可得EC=AB,再有BE=AB可得BC=AB.
點評:此題主要考查了平行四邊形的性質,正方形的判定,菱形的判定,以及直角三角形的性質.關鍵是熟練掌握菱形的判定定理,以及平行四邊形的性質.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

17、如圖,在平行四邊形ABCD中,EF∥AD,GH∥AB,EF、GH相交于點O,則圖中共有
9
個平行四邊形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在平行四邊形ABCD中,∠ABC的平分線交CD于點E,∠ADC的平分線交AB于點F,證明:四邊形DFBE是平行四邊形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在平行四邊形ABCD中,∠C=60°,BC=6厘米,DC=7厘米.點M是邊AD上一點,且DM:AD=1:3.點E、F分別從A、C同時出發(fā),以1厘米/秒的速度分別沿AB、CB向點B運動(當點F運動到點B時,點E隨之停止運動),EM、CD精英家教網(wǎng)的延長線交于點P,F(xiàn)P交AD于點Q.設運動時間為x秒,線段PC的長為y厘米.
(1)求y與x之間函數(shù)關系式,并寫出自變量x的取值范圍;
(2)當x為何值時,PF⊥AD?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在平行四邊形ABCD中,AB=2
2
AO=
3
,OB=
5
,則下列結論中不正確的是( 。
A、AC⊥BD
B、四邊形ABCD是菱形
C、△ABO≌△CBO
D、AC=BD

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•同安區(qū)一模)如圖,在平行四邊形ABCD中,已知∠ODA=90°,AC=10cm,BD=6cm,則AD的長為
4cm
4cm

查看答案和解析>>

同步練習冊答案