【題目】某農場要建一個飼養(yǎng)場(矩形ABCD)兩面靠現(xiàn)有墻(AD位置的墻最大可用長度為27米,AB位置的墻最大可用長度為15米),另兩邊用木欄圍成,中間也用木欄隔開,分成兩個場地及一處通道,并在如圖所示的三處各留1米寬的門(不用木欄)。建成后木欄總長45米。設飼養(yǎng)場(矩形ABCD)的一邊AB長為x米.

(1)飼養(yǎng)場另一邊BC= 米(用含x的代數(shù)式表示).

(2)若飼養(yǎng)場的面積為180平方米,求x的值.

【答案】(1)(48-3x);(2)10.

【解析】

1)設飼養(yǎng)場(矩形ABCD)的一邊(AB)長為x米,得出EH、FG所用圍欄長均為(x-1)米,CD=x米,BC=45-x+x-1+x-1+1=48-3x(米),
2)根據(jù)矩形面積公式可得方程;解方程即可得答案.而ABAD長限制了x的取值.

解:(1)設飼養(yǎng)場(矩形ABCD)的一邊(AB)長為x米,得出EH、FG所用圍欄長均為(x-1)米,CD=x米,BC=45-x+x-1+x-1+1=48-3x(米),

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】一種樹苗,栽種時高度約為80厘米,為研究它的生長情況,測得數(shù)據(jù)如下表:

(1)此變化過程中_____是自變量,_____是因變量;

(2)樹苗高度h與栽種的年數(shù)n的關系式為_____;

(3)栽種后_____后,樹苗能長到280厘米.

栽種以后的年數(shù)n/

高度h/厘米

1

105

2

130

3

155

4

180

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校九年級開展征文活動,征文主題只能從愛國”“敬業(yè)”“誠信”“友善四個主題選擇一個,九年級每名學生按要求都上交了一份征文,學校為了解選擇各種征文主題的學生人數(shù),隨機抽取了部分征文進行了調查,根據(jù)調查結果繪制成如下兩幅不完整的統(tǒng)計圖.

(1)求共抽取了多少名學生的征文;

(2)將上面的條形統(tǒng)計圖補充完整;

(3)在扇形統(tǒng)計圖中,選擇愛國主題所對應的圓心角是多少;

(4)如果該校九年級共有1200名學生,請估計選擇以友善為主題的九年級學生有多少名.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一張三角形紙片ABC,其中BAC=60°,BC=6,點D是BC邊上一動點,將BD,CD翻折使得B′,C′分別落在AB,AC邊上,(B與B′,C與C′分別對應),點D從點B運動至點C,△B′C′D面積的大小變化情況是(  )

A. 一直減小 B. 一直不變 C. 先減小后增大 D. 先增大后減小

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】定義符號min{a,b}的含義為:當ab時,min{ab}=b;當ab時,min{a,b}=a,如:min{1,-2=-2min{-3,-2=-3,則方程min{x,-x}=x2-1的解是________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖在ABC,ADE中,BAC=DAE=90°,AB=AC,AD=AE,點C,D,E三點在同一條直線上,連接BD,BE.以下四個結論:

BD=CE;BDCE;③∠ACE+DBC=45°;BE2=2(AD2+AB2),

其中結論正確的個數(shù)是

A.1 B.2 C3 D.4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】閱讀下列材料,完成任務:

自相似圖形

定義:若某個圖形可分割為若干個都與它相似的圖形,則稱這個圖形是自相似圖形.例如:正方形ABCD中,點E、F、G、H分別是AB、BC、CD、DA邊的中點,連接EG,HF交于點O,易知分割成的四個四邊形AEOH、EBFO、OFCG、HOGD均為正方形,且與原正方形相似,故正方形是自相似圖形.

任務:

(1)圖1中正方形ABCD分割成的四個小正方形中,每個正方形與原正方形的相似比為   

(2)如圖2,已知ABC中,ACB=90°,AC=4,BC=3,小明發(fā)現(xiàn)ABC也是“自相似圖形”,他的思路是:過點C作CDAB于點D,則CD將ABC分割成2個與它自己相似的小直角三角形.已知△ACD∽△ABC,則ACD與ABC的相似比為   ;

(3)現(xiàn)有一個矩形ABCD是自相似圖形,其中長AD=a,寬AB=b(a>b).

請從下列A、B兩題中任選一條作答:我選擇   題.

A:①如圖3﹣1,若將矩形ABCD縱向分割成兩個全等矩形,且與原矩形都相似,則a=   (用含b的式子表示);

如圖3﹣2若將矩形ABCD縱向分割成n個全等矩形,且與原矩形都相似,則a=   (用含n,b的式子表示);

B:①如圖4﹣1,若將矩形ABCD先縱向分割出2個全等矩形,再將剩余的部分橫向分割成3個全等矩形,且分割得到的矩形與原矩形都相似,則a=   (用含b的式子表示);

如圖4﹣2,若將矩形ABCD先縱向分割出m個全等矩形,再將剩余的部分橫向分割成n個全等矩形,且分割得到的矩形與原矩形都相似,則a=   (用含m,n,b的式子表示).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,∠C=90°,AD平分∠CAB,交CB于點D,過點DDEAB于點E.

(1)求證:△ACD≌△AED;

(2)若∠B=30°,CD=2,求BD的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校組織一項公益知識競賽,比賽規(guī)定:每個班級由2名男生、2名女生及1名班主任老師組成代表隊.但參賽時,每班只能有3名隊員上場參賽,班主任老師必須參加,另外2名隊員分別在2名男生和2名女生中各隨機抽出1名.初三(1)班由甲、乙2名男生和丙、丁2名女生及1名班主任組成了代表隊,求恰好抽到由男生甲、女生丙和這位班主任一起上場參賽的概率.(請用畫樹狀圖列表列舉等方法給出分析過程)

查看答案和解析>>

同步練習冊答案