【題目】某農場要建一個飼養(yǎng)場(矩形ABCD)兩面靠現(xiàn)有墻(AD位置的墻最大可用長度為27米,AB位置的墻最大可用長度為15米),另兩邊用木欄圍成,中間也用木欄隔開,分成兩個場地及一處通道,并在如圖所示的三處各留1米寬的門(不用木欄)。建成后木欄總長45米。設飼養(yǎng)場(矩形ABCD)的一邊AB長為x米.
(1)飼養(yǎng)場另一邊BC= 米(用含x的代數(shù)式表示).
(2)若飼養(yǎng)場的面積為180平方米,求x的值.
科目:初中數(shù)學 來源: 題型:
【題目】一種樹苗,栽種時高度約為80厘米,為研究它的生長情況,測得數(shù)據(jù)如下表:
(1)此變化過程中_____是自變量,_____是因變量;
(2)樹苗高度h與栽種的年數(shù)n的關系式為_____;
(3)栽種后_____后,樹苗能長到280厘米.
栽種以后的年數(shù)n/年 | 高度h/厘米 |
1 | 105 |
2 | 130 |
3 | 155 |
4 | 180 |
… | … |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校九年級開展征文活動,征文主題只能從“愛國”“敬業(yè)”“誠信”“友善”四個主題選擇一個,九年級每名學生按要求都上交了一份征文,學校為了解選擇各種征文主題的學生人數(shù),隨機抽取了部分征文進行了調查,根據(jù)調查結果繪制成如下兩幅不完整的統(tǒng)計圖.
(1)求共抽取了多少名學生的征文;
(2)將上面的條形統(tǒng)計圖補充完整;
(3)在扇形統(tǒng)計圖中,選擇“愛國”主題所對應的圓心角是多少;
(4)如果該校九年級共有1200名學生,請估計選擇以“友善”為主題的九年級學生有多少名.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一張三角形紙片ABC,其中∠BAC=60°,BC=6,點D是BC邊上一動點,將BD,CD翻折使得B′,C′分別落在AB,AC邊上,(B與B′,C與C′分別對應),點D從點B運動至點C,△B′C′D面積的大小變化情況是( )
A. 一直減小 B. 一直不變 C. 先減小后增大 D. 先增大后減小
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】定義符號min{a,b}的含義為:當a≥b時,min{a,b}=b;當a<b時,min{a,b}=a,如:min{1,-2)=-2,min{-3,-2)=-3,則方程min{x,-x}=x2-1的解是________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖在△ABC,△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,點C,D,E三點在同一條直線上,連接BD,BE.以下四個結論:
①BD=CE;②BD⊥CE;③∠ACE+∠DBC=45°;④BE2=2(AD2+AB2),
其中結論正確的個數(shù)是
A.1 B.2 C.3 D.4
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀下列材料,完成任務:
自相似圖形
定義:若某個圖形可分割為若干個都與它相似的圖形,則稱這個圖形是自相似圖形.例如:正方形ABCD中,點E、F、G、H分別是AB、BC、CD、DA邊的中點,連接EG,HF交于點O,易知分割成的四個四邊形AEOH、EBFO、OFCG、HOGD均為正方形,且與原正方形相似,故正方形是自相似圖形.
任務:
(1)圖1中正方形ABCD分割成的四個小正方形中,每個正方形與原正方形的相似比為 ;
(2)如圖2,已知△ABC中,∠ACB=90°,AC=4,BC=3,小明發(fā)現(xiàn)△ABC也是“自相似圖形”,他的思路是:過點C作CD⊥AB于點D,則CD將△ABC分割成2個與它自己相似的小直角三角形.已知△ACD∽△ABC,則△ACD與△ABC的相似比為 ;
(3)現(xiàn)有一個矩形ABCD是自相似圖形,其中長AD=a,寬AB=b(a>b).
請從下列A、B兩題中任選一條作答:我選擇 題.
A:①如圖3﹣1,若將矩形ABCD縱向分割成兩個全等矩形,且與原矩形都相似,則a= (用含b的式子表示);
②如圖3﹣2若將矩形ABCD縱向分割成n個全等矩形,且與原矩形都相似,則a= (用含n,b的式子表示);
B:①如圖4﹣1,若將矩形ABCD先縱向分割出2個全等矩形,再將剩余的部分橫向分割成3個全等矩形,且分割得到的矩形與原矩形都相似,則a= (用含b的式子表示);
②如圖4﹣2,若將矩形ABCD先縱向分割出m個全等矩形,再將剩余的部分橫向分割成n個全等矩形,且分割得到的矩形與原矩形都相似,則a= (用含m,n,b的式子表示).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,AD平分∠CAB,交CB于點D,過點D作DE⊥AB于點E.
(1)求證:△ACD≌△AED;
(2)若∠B=30°,CD=2,求BD的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校組織一項公益知識競賽,比賽規(guī)定:每個班級由2名男生、2名女生及1名班主任老師組成代表隊.但參賽時,每班只能有3名隊員上場參賽,班主任老師必須參加,另外2名隊員分別在2名男生和2名女生中各隨機抽出1名.初三(1)班由甲、乙2名男生和丙、丁2名女生及1名班主任組成了代表隊,求恰好抽到由男生甲、女生丙和這位班主任一起上場參賽的概率.(請用“畫樹狀圖”或“列表”或“列舉”等方法給出分析過程)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com