(2012•汕頭)如圖,將△ABC繞著點C順時針旋轉(zhuǎn)50°后得到△A′B′C′.若∠A=40°.∠B′=110°,則∠BCA′的度數(shù)是(  )
分析:首先根據(jù)旋轉(zhuǎn)的性質(zhì)可得:∠A′=∠A,∠A′CB′=∠ACB,即可得到∠A′=40°,再有∠B′=110°,利用三角形內(nèi)角和可得∠A′CB′的度數(shù),進而得到∠ACB的度數(shù),再由條件將△ABC繞著點C順時針旋轉(zhuǎn)50°后得到△A′B′C′可得∠ACA′=50°,即可得到∠BCA′的度數(shù).
解答:解:根據(jù)旋轉(zhuǎn)的性質(zhì)可得:∠A′=∠A,∠A′CB′=∠ACB,
∵∠A=40°,
∴∠A′=40°,
∵∠B′=110°,
∴∠A′CB′=180°-110°-40°=30°,
∴∠ACB=30°,
∵將△ABC繞著點C順時針旋轉(zhuǎn)50°后得到△A′B′C′,
∴∠ACA′=50°,
∴∠BCA′=30°+50°=80°,
故選:B.
點評:此題主要考查了旋轉(zhuǎn)的性質(zhì),關鍵是熟練掌握旋轉(zhuǎn)前、后的圖形全等,進而可得到一些對應角相等.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

(2012•汕頭模擬)如圖,在直角坐標系中,已知點M0的坐標為(1,0),將線段OM0繞原點O沿逆時針方向旋轉(zhuǎn)45°,再將其延長到M1,使M1M0⊥OM0,得到線段OM1;又將線段OM1繞原點O沿逆時針方向旋轉(zhuǎn)45°,再將其延長到M2,使M2M1⊥OM1,得到線段OM2,如此下去,得到線段
OM3,OM4,…,OMn,則OMn=
2
n
2
n

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•汕頭模擬)如圖,方格紙中的每個小方格都是邊長為1的正方形,我們把以格點間連線為邊的三角形稱為“格點三角形”,圖中的△ABC是格點三角形.
(1)把△ABC向左平移8格后得到△A1B1C1,畫△A1B1C1的圖形;
(2)把△ABC以點A為位似中心放大,使放大前后對應邊長的比為1:2,畫出△A2B2C2的圖形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•汕頭模擬)如圖,在⊙O中,直徑AB垂直于弦CD,垂足為E,連接AC,將△ACE沿AC翻折得到△ACF,直線FC與直線AB相交于點G.
(1)直線FC與⊙O有何位置關系?并說明理由;
(2)若OB=BG=4,求CD的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•汕頭模擬)如圖,直角梯形OABC的一頂點O是坐標原點,邊OA,OC分別在x軸、y軸的正半軸上,OA∥BC,D是BC上一點,BD=
1
4
OA=
2
,AB=3,∠OAB=45°,E、F分別是線段OA、AB上的兩動點,且始終保持∠DEF=45°.

(1)直接寫出D點的坐標;
(2)設OE=x,AF=y,試確定y與x之間的函數(shù)關系;
(3)當△AEF是等腰三角形時,求y的值.

查看答案和解析>>

同步練習冊答案