【題目】如圖,線段AC與BD交于點O,且OA=OC,請?zhí)砑右粋條件,使△OAB≌△OCD,這個條件是 .
【答案】∠A=∠C,∠B=∠D,OD=OB,AB∥CD
【解析】解:∵OA=OC,∠A=∠C,∠AOB=∠COD,
∴△OAB≌△OCD(ASA).
∵OA=OC,∠B=∠D,∠AOB=∠COD,
∴△OAB≌△OCD(AAS).
∵OA=OC,OD=OB,∠AOB=∠COD,
∴△OAB≌△OCD(SAS).
∵AB∥CD,
∴∠A=∠C,∠B=∠D(兩直線平行,內(nèi)錯角相等),
∵OA=OC,
∴△OAB≌△OCD(AAS).
故填∠A=∠C,∠B=∠D,OD=OB,AB∥CD.
本題要判定△OAB≌△OCD,已知OA=OC,∠AOB=∠COD,具備了一組邊對應相等和一組角對應相等,故添加∠A=∠C,∠B=∠D,OD=OB,AB∥CD后可分別根據(jù)ASA、AAS、SAS、AAS判定△OAB≌△OCD.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,以直線AB上一點O為端點作射線OC,使∠BOC=70°,將一個直角三角形的直角頂點放在點O處.(注:∠DOE=90°)
(1)如圖①,若直角三角板DOE的一邊OD放在射線OB上,則∠COE= °;
(2)如圖②,將直角三角板DOE繞點O逆時針方向轉(zhuǎn)動到某個位置,若OC恰好平分∠BOE,求∠COD的度數(shù);
(3)如圖③,將直角三角板DOE繞點O轉(zhuǎn)動,如果OD始終在∠BOC的內(nèi)部,試猜想∠BOD和∠COE有怎樣的數(shù)量關系?并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某商場將每件進價為80元的某種商品原來按每件100元出售,一天可售出100件.后來經(jīng)過市場調(diào)查,發(fā)現(xiàn)這種商品單價每降低1元,其銷量可增加10件.
(1)求商場經(jīng)營該商品原來一天可獲利潤多少元?
(2)設后來該商品每件降價x元,,商場一天可獲利潤y元.
①若商場經(jīng)營該商品一天要獲利潤2160元,則每件商品應降價多少元?
②求出y與x之間的函數(shù)關系式,結(jié)合題意寫出當x取何值時,商場獲利潤不少于2160元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系xOy中,⊙C的半徑為r(r>1),P是圓內(nèi)與圓心C不重合的點,⊙C的“完美點”的定義如下:若直線CP與⊙C交于點A,B,滿足|PA-PB|=2,則稱點P為⊙C的“完美點”,如圖為⊙C及其“完美點”P的示意圖.
(1)當⊙O的半徑為2時,
①點M(,0) ⊙O的“完美點”,點N(0,1) ⊙O的“完美點”,點T(-,- ) ⊙O的“完美點”(填“是”或者“不是”);
②若⊙O的“完美點”P在直線y=x上,求PO的長及點P的坐標;
(2)⊙C的圓心在直線y=x+1上,半徑為2,若y軸上存在⊙C的“完美點”,求圓心C的縱坐標t的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】我市建設森林城市需要大量的樹苗,某生態(tài)示范園負責對甲、乙、丙、丁四個品種的樹苗共500株進行樹苗成活率試驗,從中選擇成活率高的品種進行推廣.通過試驗得知:丙種樹苗的成活率為89.6%,把試驗數(shù)據(jù)繪制成下面兩幅統(tǒng)計圖.(部分信息未給出)
(1)試驗所用的乙種樹苗的數(shù)量是_______株;
(2)求出丙種樹苗的成活數(shù),并把圖②補充完整;
(3)你認為應選哪種樹苗進行推廣?請通過計算說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在矩形ABCD中 ,AB=4,BC=3,點P在邊AB上.若將△DAP沿DP折疊 ,使點A落在矩形ABCD的對角線上,則AP的長為____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一組數(shù)據(jù)2,4,x,2,4,7的眾數(shù)是2,則這組數(shù)據(jù)的平均數(shù),中位數(shù)分別為( 。
A. 3.5,3 B. 3,4 C. 3,3.5 D. 4,3
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com