精英家教網(wǎng)如圖,扇形OAB是圓錐的側(cè)面展開圖,若小正方形方格的邊長為
2
cm,則這個圓錐的高為
 
cm.
分析:用“此扇形的弧長等于圓錐底面周長”作為相等關(guān)系,求圓錐的底面半徑,然后求圓錐的高即可.
解答:解:∵扇形OAB是圓錐的側(cè)面展開圖,若小正方形方格的邊長為
2
cm,
∴圓錐的母線長為4,側(cè)面展開扇形的圓心角為90°,
設(shè)圓錐的底面半徑為r,則2πr=
90π×4
180
,所以r=1cm.
由勾股定理得:圓錐的高=
42-12
=
15
,
故答案為
15
點評:圓錐的側(cè)面展開圖是一個扇形,此扇形的弧長等于圓錐底面周長,扇形的半徑等于圓錐的母線長.本題就是把圓錐的側(cè)面展開成扇形,“化曲面為平面”,用勾股定理解決.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2013•椒江區(qū)一模)我們把弧長等于半徑的扇形叫等邊扇形.如圖,扇形OAB是等邊扇形,設(shè)OA=R,下列結(jié)論中:①∠AOB=60°;②扇形的周長為3R;③扇形的面積為
1
2
R2
;④點A與半徑OB中點的連線垂直O(jiān)B;⑤設(shè)OA、OB的垂直平分線交于點P,以P為圓心,PA為半徑作圓,則該圓一定會經(jīng)過扇形的弧AB的中點.其中正確的個數(shù)為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011-2012學(xué)年北京市九年級上學(xué)期期中考試數(shù)學(xué)卷 題型:填空題

如圖,扇形OAB是圓錐的側(cè)面展開圖,若小正方形的邊長均為1cm,則這個圓錐的底面圓的半徑為             cm。

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012屆北京市九年級上學(xué)期期中考試數(shù)學(xué)卷 題型:填空題

如圖,扇形OAB是圓錐的側(cè)面展開圖,若小正方形的邊長均為1cm,則這個圓錐的底面圓的半徑為             cm。

 

 

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013年內(nèi)蒙古呼倫貝爾市海九中中考數(shù)學(xué)二模試卷(解析版) 題型:選擇題

我們把弧長等于半徑的扇形叫等邊扇形.如圖,扇形OAB是等邊扇形,設(shè)OA=R,下列結(jié)論中:①∠AOB=60°;②扇形的周長為3R;③扇形的面積為;④點A與半徑OB中點的連線垂直O(jiān)B;⑤設(shè)OA、OB的垂直平分線交于點P,以P為圓心,PA為半徑作圓,則該圓一定會經(jīng)過扇形的弧AB的中點.其中正確的個數(shù)為( )

A.1個
B.2個
C.3個
D.4個

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013年浙江省臺州市三區(qū)聯(lián)考中考數(shù)學(xué)一模試卷(天臺、椒江、玉環(huán))(解析版) 題型:選擇題

我們把弧長等于半徑的扇形叫等邊扇形.如圖,扇形OAB是等邊扇形,設(shè)OA=R,下列結(jié)論中:①∠AOB=60°;②扇形的周長為3R;③扇形的面積為;④點A與半徑OB中點的連線垂直O(jiān)B;⑤設(shè)OA、OB的垂直平分線交于點P,以P為圓心,PA為半徑作圓,則該圓一定會經(jīng)過扇形的弧AB的中點.其中正確的個數(shù)為( )

A.1個
B.2個
C.3個
D.4個

查看答案和解析>>

同步練習(xí)冊答案