已知BD、CE是△ABC的高,點P在BD的延長線上,BP=AC,點Q在CE上,CQ=AB。判斷線段AP和AQ的關(guān)系,并證明.

AP=AQ

∵BD、CE是△ABC的高,∴∠AEC=∠ADB=90°

∵∠AEC+∠2=90°,∠ADB+∠1=90°

∴∠1=∠2

在△ABP和△QCA中

AB=QC,∠1=∠2.BP=CA

∴△ABP≌△QCA

∴AP=AQ

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

25、已知BD、CE是△ABC的高,點P在BD的延長線上,BP=AC,點Q在CE上,CQ=AB.判斷線段AP和AQ的關(guān)系,并證明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

10、已知BD、CE是△ABC的高,直線BD、CE相交所成的角中有一個角為50°,則∠BAC等于
50或130
度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)已知BD,CE是△ABC的兩條高,M、N分別為BC、DE的中點,勇敢猜一猜:
(1)線段EM與DM的大小有什么關(guān)系?
(2)線段MN與DE的位置有什么關(guān)系?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知BD、CE是△ABC的高,∠A=50°,直線BD、CE相交于點O,則∠BOC=
130°
130°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知BD、CE是△ABC的高,下面給出四個結(jié)論:①∠1=∠2=90°-∠A;②∠3=∠A=90°-∠1;③∠BOC=∠A+∠1+∠2;④∠1+∠2+∠3+∠A=180°,其中正確的個數(shù)是( 。

查看答案和解析>>

同步練習冊答案