【題目】已知△ABC與△CDE都是等腰直角三角形,∠ACB=90°,∠DCE=90°,連結(jié)BE,AD,相交于點F.求證:
(1)AD=BE;
(2)AD⊥BE.
【答案】(1)見解析;(2)見解析.
【解析】
(1)根據(jù)等腰直角三角形的性質(zhì)得到∠ECD=∠ACB=90°,CD=CE,CA=CB,則有∠BCE=∠DCA,根據(jù)“SAS”可判斷△BCE≌△ACD,根據(jù)全等三角形的性質(zhì)得到BE=AD;
(2)由△BCE≌△ACD得到∠CBF=∠CAD,然后根據(jù)∠ABC+∠CAD+∠BAD=90°,得到∠ABC+∠CBF+∠BAD=90°,最后根據(jù)三角形的內(nèi)角和定理可知∠AFB=90°.
證明:(1)∵△ABC與△CDE都是等腰直角三角形
∴CE=CD,CB=CA,∠DCE=∠ACB=90°.
∴∠DCE+∠BCD=∠ACB+∠BCD.
∴∠ECB=∠DCA.
在△BCE和△ACD中,
∴△BCE≌△ACD(SAS).
∴BE=AD.
(2)由(1)得:△BCE≌△ACD
∴∠CBF=∠CAD.
∵∠ABC+∠CAD+∠BAD=90°,
∴∠ABC+∠CBF+∠BAD=90°.
∴∠AFB=90°.
∴AD⊥BE.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】反比例函數(shù)y=(k為常數(shù),且k≠0)的圖象經(jīng)過點A(1,3)、B(3,m).
(1)求反比例函數(shù)的解析式及B點的坐標(biāo);
(2)在x軸上找一點P,使PA+PB的值最小,求滿足條件的點P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,分別是數(shù)軸上四個整數(shù)所對應(yīng)的點,其中有一點是原點,并且這四個整數(shù)點每相鄰兩點之間的距離為1個單位長度.?dāng)?shù)對應(yīng)的點在與之間,數(shù)對應(yīng)的點在與之間.若,則原點是( )
A.或B.與C.與D.與
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC≌△ADE,線段BC的延長線過點E,與線段AD交于點F,∠ACB=∠AED=108°,∠CAD=12°,∠B=48°,則∠DEF的度數(shù)_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知正方形DEFG的頂點D、E在△ABC的邊BC上,頂點G、F分別在邊AB、AC上.如果BC=4,△ABC的面積是6,那么這個正方形的邊長是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠BAC=90°,AB=AC,分別過點B、C兩點作過點A的直線的垂線,垂足為M、N.
(1)如圖1,當(dāng)M、N兩點在直線BC的同側(cè)時,求證:BM+CN=MN;
(2)如圖2,當(dāng)M、N兩點在直線BC的兩側(cè)時,BM、CN、MN三條線段的數(shù)量關(guān)系并證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知直線AB∥CD,直線EF分別交AB、CD于A、C,CM是∠ACD的平分線,CM交AB于H,過A作AG⊥AC交CM于G.
(1)如圖1,點G在CH的延長線上時,
①若∠GAB=36°,則∠MCD=______.
②猜想:∠GAB與∠MCD之間的數(shù)量關(guān)系是______.
(2)如圖2,點G在CH上時,(1)②猜想的∠GAB與∠MCD之間的數(shù)量關(guān)系還成立嗎?如果成立,請給出證明;如果不成立,請寫出∠GAB與∠MCD之間的數(shù)量關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一架云梯長25 m,斜靠在一面墻上,梯子靠墻的一端距地面24 m.
(1)這個梯子底端離墻有多少米?
(2) 如果梯子的頂端下滑了4m,那么梯子的底部在水平方向也滑動了4m嗎?為什么?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com