【題目】如圖,在等腰△ABC中,∠BAC=120°,DE是AC的垂直平分線,DE=1cm,求BD的長.
【答案】4cm
【解析】試題分析:連接AD,先根據(jù)等腰三角形兩底角相等求出∠B、∠C,根據(jù)線段垂直平分線上的點到兩端點的距離相等可得AD=CD,根據(jù)等腰三角形兩底角相等可得∠C=∠CAD,再求出∠BAD,然后根據(jù)直角三角形30°角所對的直角邊等于斜邊的一半求解即可.
試題解析:解:連接AD.∵等腰△ABC中,∠BAC=120°,∴∠B=∠C=×(180°-120°)=30°.∵DE是AC的垂直平分線,∴AD=CD,∴∠C=∠CAD=30°,∴∠BAD=∠BAC-∠CAD=120°-30°=90°.∵DE=1cm,DE⊥AC,∴CD=2DE=2cm,∴AD=2cm.在Rt△ABD中,BD=2AD=2×2=4cm.
科目:初中數(shù)學 來源: 題型:
【題目】解決問題:
一輛貨車從超市出發(fā),向東走了3千米到達小彬家,繼續(xù)走2.5千米到達小穎家,然后向西走了10千米到達小明家,最后回到超市.
(1)以超市為原點,以向東的方向為正方向,用1個單位長度表示1千米,在數(shù)軸上表示出小明家,小彬家,小穎家的位置.
(2)小明家距小彬家多遠?
(3)貨車一共行駛了多少千米?
(4)貨車每千米耗油0.2升,這次共耗油多少升?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖是二次函數(shù)y=ax2+bx+c圖象的一部分,過點(x1 , 0),﹣3<x1<﹣2,對稱軸為直線x=﹣1.給出四個結論:①abc>0;②2a+b=0;③b2>4ac;④3b+2c>0,其中正確的結論有( )
A.1個
B.2個
C.3個
D.4個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,我市某中學課外活動小組的同學利用所學知識去測量釜溪河沙灣段的寬度.小宇同學在A處觀測對岸C點,測得∠CAD=45°,小英同學在距A處50米遠的B處測得∠CBD=30°,請你根據(jù)這些數(shù)據(jù)算出河寬.(精確到0.01米,參考數(shù)據(jù) ≈1.414, ≈1.732)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知拋物線y=ax2+bx+c的頂點為D(﹣1,2),其部分圖象如圖所示,給出下列四個結論: ①a<0; ②b2﹣4ac>0;③2a﹣b=0;④若點P(x0 , y0)在拋物線上,則ax02+bx0+c≤a﹣b+c.其中結論正確的是( )
A.1個
B.2個
C.3個
D.4個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在邊長為1的小正方形組成的網(wǎng)格中,△AOB的三個頂點均在格點上,點A、B的坐標分別為(3,2)、(1,3).△AOB繞點O逆時針旋轉90后得到△A1OB1.
(1)在網(wǎng)格中畫出△A1OB1,并標上字母;
(2)點A關于O點中心對稱的點的坐標為___________;
(3)點A1的坐標為________;
(4)△A1OB1的面積為_______________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,分別以AB、AC、BC為邊在BC的同側作等邊△ABD、等邊△ACE、等邊△BCF.證明四邊形DAEF是平行四邊形.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】地表以下巖層的溫度T(℃)隨著所處的深度h(km)的變化而變化,T與h之間在一定范圍內近似地成一次函數(shù)關系.
(1)根據(jù)下表,求T(℃)與h(km)之間的函數(shù)關系式;
溫度T(℃) | … | 90 | 160 | 300 | … |
深度h(km) | … | 2 | 4 | 8 | … |
(2)當巖層溫度達到1770℃時,巖層所處的深度為多少?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com