已知AD是△ABC的角平分線,點E、F分別是邊AB,AC的中點,連接DE,DF,在不再連接其他線段的前提下,要使四邊形AEDF成為菱形,還需添加一個條件,這個條件可以是________(答案不唯一).

AB=AC或∠B=∠C或AE=AF
分析:菱形的判定方法有三種:
①定義:一組鄰邊相等的平行四邊形是菱形;
②四邊相等;
③對角線互相垂直平分的四邊形是菱形.
解答:由題意知,可添加:AB=AC.
則三角形是等腰三角形,
由等腰三角形的性質(zhì)知,頂角的平分線與底邊上的中線重合,
即點D是BC的中點,
∴DE,EF是三角形的中位線,
∴DE∥AB,DF∥AC,
∴四邊形ADEF是平行四邊形,
∵AB=AC,
點E,F(xiàn)分別是AB,AC的中點,
∴AE=AF,
∴平行四邊形ADEF為菱形.
點評:本題考查了菱形的判定.利用了三角形的中位線的性質(zhì)和平行四邊形的判定和性質(zhì)、等腰三角形的性質(zhì).也可添加∠B=∠C或AE=AF.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知AD是△ABC的外角∠EAC的平分線,交BC的延長線于點D,延長DA交△ABC的外接圓精英家教網(wǎng)于點F,連接FB、FC.
(1)求證:FB=FC;
(2)求證:FB2=FA•FD;
(3)若AB是△ABC外接圓的直徑,∠EAC=120°,BC=6cm,求AD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

3、如圖,已知AD是△ABC的中線,AE=EF=FC,下面給出三個關(guān)系式:①AG:AD=1:2;②GE:BE=1:4;③GE:BE=3:4,其中正確的為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

13、如圖所示,已知AD是△ABC的中線,CE是△ACD的中線,S△ACE=4cm2,則S△ABC=
16
cm2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

24、已知AD是△ABC的角平分線,點E、F分別是邊AB,AC的中點,連接DE,DF,在不再連接其他線段的前提下,要使四邊形AEDF成為菱形,還需添加一個條件,這個條件可以是
AB=AC或∠B=∠C或AE=AF
(答案不唯一).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(1)如圖,已知D是△ABC的邊AB上一點,F(xiàn)C∥AB,DF交AC于點E,DE=EF.求證:E是AC的中點.
(2)如圖,已知AD是△ABC的角平分線,DE∥AC交AB于點E,DF∥AB交AC于點F.求證:四邊形AEDF是菱形.

查看答案和解析>>

同步練習(xí)冊答案