【題目】從﹣2,﹣,0,4中任取一個數(shù)記為m,再從余下的三個數(shù)中,任取一個數(shù)記為n,若k=mn.
(1)請用列表或畫樹狀圖的方法表示取出數(shù)字的所有結果;
(2)求正比例函數(shù)y=kx的圖象經(jīng)過第一、三象限的概率.
【答案】(1)詳見解析;(2).
【解析】
(1)畫樹狀圖展示所有12種等可能的結果數(shù);
(2)利用正比例函數(shù)的性質(zhì)得到k>0時,正比例函數(shù)y=kx的圖象經(jīng)過第一、三象限,然后找出兩數(shù)之積為正數(shù)的結果數(shù),再利用概率公式計算即可.
解:(1)畫樹狀圖為:
共有12種等可能的結果數(shù);
(2)∵正比例函數(shù)y=kx的圖象經(jīng)過第一、三象限,
∴ ,
而兩數(shù)之積為正數(shù)的情況數(shù)為2,即k>0有兩種可能,
所以正比例函數(shù)y=kx的圖象經(jīng)過第一、三象限的概率為=.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形ABCD中,AB=6,E為AB的中點,將△ADE沿DE翻折得到△FDE,延長EF交BC于G,FH⊥BC,垂足為H,連接BF、DG.以下結論:①BF∥ED;②△DFG≌△DCG;③△FHB∽△EAD;④tan∠GEB=;⑤S△BFG=2.6;其中正確的個數(shù)是( )
A. 2B. 3C. 4D. 5
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知點A(1,a)是反比例函數(shù)的圖象上一點,直線與反比例函數(shù)的圖象的交點為點B、D,且B(3,﹣1),求:
(1)求反比例函數(shù)的解析式;
(2)求點D坐標,并直接寫出y1>y2時x的取值范圍;
(3)動點P(x,0)在x軸的正半軸上運動,當線段PA與線段PB之差達到最大時,求點P的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線與x軸交于點A(3,0),與y軸交于點B,拋物線經(jīng)過點A,B.
(1)求點B的坐標和拋物線的解析式;
(2)M(m,0)為線段OA上一個動點,過點M垂直于x軸的直線與直線AB和拋物線分別交于點P、N.
①試用含m的代數(shù)式表示PN的長;
②m為何值時△ABN面積最大,并求△ABN的最大值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,拋物線y=﹣x2+mx+n交x軸于點A(﹣2,0)和點B,交y軸于點C(0,2).
(1)求拋物線的函數(shù)表達式;
(2)若點M在拋物線上,且S△AOM=2S△BOC,求點M的坐標;
(3)如圖2,設點N是線段AC上的一動點,作DN⊥x軸,交拋物線于點D,求線段DN長度的最大值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△AOB是直角三角形,∠AOB=90°,OB=2OA,點A在反比例函數(shù)y=的圖象上.若點B在反比例函數(shù)y=的圖象上,則k的值為( 。
A.4B.﹣4C.8D.﹣8
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:△ABC在坐標平面內(nèi),三個頂點的坐標分別為A(0,3),B(3,4),C(2,2).(正方形網(wǎng)格中,每個小正方形的邊長是1個單位長度).
(1)作出△ABC繞點A順時針方向旋轉(zhuǎn)90°后得到的△A1B1C1,并直接寫出C1點的坐標;
(2)作出△ABC關于原點O成中心對稱的△A2B2C2,并直接寫出B2的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,一動點從半徑為2的⊙O上的A0點出發(fā),沿著射線A0O方向運動到⊙O上的點A1處,再向左沿著與射線A1O夾角為60°的方向運動到⊙O上的點A2處;接著又從A2點出發(fā),沿著射線A2O方向運動到⊙O上的點A3處,再向左沿著與射線A3O夾角為60°的方向運動到⊙O上的點A4處;A4A0間的距離是_____;…按此規(guī)律運動到點A2019處,則點A2019與點A0間的距離是_____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com