請同學(xué)們認(rèn)真閱讀下面材料,然后解答問題。(6分)
解方程(x2-1)2-5(x-1)+4=0
解:設(shè)y=x2-1
則原方程化為:y2-5y+4=0 ① ∴y1=1 y2=4
當(dāng)y=1時,有x2-1=1,即x2=2 ∴x=±
當(dāng)y=4時,有x2-1=4,即x2=5 ∴x=±
∴原方程的解為:x1=- x2= x3=- x4=
解答問題:
⑴填空:在由原方程得到①的過程中,利用________________法達(dá)到了降次的目的,體現(xiàn)了________________的數(shù)學(xué)思想。
⑵解方程-3(-3)=0
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:閱讀理解
2 |
5 |
2 |
2 |
5 |
5 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:閱讀理解
2 |
5 |
2 |
2 |
5 |
5 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:閱讀理解
請同學(xué)們認(rèn)真閱讀下面材料,然后解答問題。(6分)
解方程(x2-1)2-5(x-1)+4=0
解:設(shè)y=x2-1
則原方程化為:y2-5y+4=0 ① ∴y1=1 y2=4
當(dāng)y=1時,有x2-1=1,即x2=2 ∴x=±
當(dāng)y=4時,有x2-1=4,即x2=5 ∴x=±
∴原方程的解為:x1=- x2= x3=- x4=
解答問題:
⑴填空:在由原方程得到①的過程中,利用________________法達(dá)到了降次的目的,體現(xiàn)了________________的數(shù)學(xué)思想。
⑵解方程-3(-3)=0
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:閱讀理解
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2010-2011學(xué)年江蘇省興化市初三第一學(xué)期12月月考數(shù)學(xué)卷 題型:解答題
請同學(xué)們認(rèn)真閱讀下面材料,然后解答問題。(6分)
解方程(x2-1)2-5(x-1)+4=0
解:設(shè)y=x2-1
則原方程化為:y2-5y+4=0 ① ∴y1=1 y2=4
當(dāng)y=1時,有x2-1=1,即x2=2 ∴x=±
當(dāng)y=4時,有x2-1=4,即x2=5 ∴x=±
∴原方程的解為:x1=- x2= x3=- x4=
解答問題:
⑴填空:在由原方程得到①的過程中,利用________________法達(dá)到了降次的目的,體現(xiàn)了________________的數(shù)學(xué)思想。
⑵解方程-3(-3)=0
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com