如圖所示,已知二次函數(shù)與坐標(biāo)軸分別交于A、D、B三點(diǎn),頂點(diǎn)為C。
(1)求tan∠BAC
(2)在y軸上是否存在一點(diǎn)P,使得△DOP與△ABC相似,如果存在,求出點(diǎn)P的坐標(biāo),如果不存在,說明理由。
(3)Q是拋物線上一動(dòng)點(diǎn),使得以A、B、C、Q為端點(diǎn)的四邊形是一個(gè)梯形,請(qǐng)直接寫出滿足條件的Q點(diǎn)的坐標(biāo)。(不要求寫出解題過程)
解:(1)把y=0代入,得。
解得
即A(3,0),D(-1,0)
把x=0代入,得y=3
∴B(0,3)
把x=1代入
y=4,即C(1,4)。
過點(diǎn)C作CE⊥y軸,垂足為E。
∵△AOB和△BCE都是等腰直角三角形
∴∠ABC=90°且BC=,AB=。
∴tan∠BAC=。。。。。4分
(2)①P在原點(diǎn)時(shí),
∵PD=1,BP=3,∠BPD=∠ABC,且
即△DOP∽△ABC。。。。。。。。。。。。。。。。2分
②當(dāng)P在y軸負(fù)半軸時(shí),設(shè)P(0,a)
由①知∠DBP=∠BAC。
∴只需∠BDP=Rt∠即可。
此時(shí),易證△BDO∽△DOP
∴
∴OP=
∴P(0,)。。。。。。。。。。。。。。。。2分
②當(dāng)P在y軸正半軸時(shí),顯然△BDP不可能為Rt△。
∴所以滿足題意的P點(diǎn)為(0,0)或(0,)。
(3)(-2,-5),(4,-5),(2,3)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
如圖,兩個(gè)同心圓的圓心是O,大圓的半徑為10,小圓的半徑為6,AD是大圓的直徑.大圓的弦AB,BE分別與小圓相切于點(diǎn)C,F.AD,BE相交于點(diǎn)G,連接BD.
(1)求BD 的長;
(2)求∠ABE+2∠D的度數(shù);
(3)求的值.(改編)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
古希臘數(shù)學(xué)家丟番圖(公元250年前后)在《算術(shù)》中就提到了一元二次方程的問題,不過當(dāng)時(shí)古希臘人還沒有尋求到它的求根公式,只能用圖解等方法來求解。在歐幾里得的《幾何原本》中,形如(a>0,b>0)的方程的圖解法是:以和b為兩直角邊做Rt△ABC,再在斜邊上截取BD=,則AD的長就是所求方程的解。(1)請(qǐng)利用所給的線段和線段b,作出方程的解。
(2)說說上述求法的不足之處
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
從邊長相等的正三角形、正四邊形、正五邊形、正六邊形、正八邊形中任選兩種不同的 正多邊形,能夠進(jìn)行平面鑲嵌的概率是 ( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
有兩個(gè)圓,⊙的半徑等于地球的半徑,⊙的半徑等于一個(gè)籃球的半徑,現(xiàn)將兩個(gè)圓都向外膨脹(相當(dāng)于作同心圓),使周長都增加1米,則半徑伸長的較多的圓是( )
A、⊙ B、⊙ C、兩圓的半徑伸長是相同的 D、無法確定
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,拋物線經(jīng)過點(diǎn)A(1,0),B(5,0),C(0,)三點(diǎn),設(shè)點(diǎn)E(x,y)是拋物線上一動(dòng)點(diǎn),且在x軸下方,四邊形OEBF是以O(shè)B為對(duì)角線的平行四邊形.
(1)求拋物線的解析式;
(2)當(dāng)點(diǎn)E(x,y)運(yùn)動(dòng)時(shí),試求平行四邊形OEBF的面積S與x之間的函數(shù)關(guān)系式,并求出面積S的最大值?
(3)是否存在這樣的點(diǎn)E,使平行四邊形OEBF為正方形?若存在,求E點(diǎn),F(xiàn)點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com