【題目】解下列方程:
(1)2(10﹣0.5y)=﹣(1.5y+2)
(2)(x﹣5)=3﹣(x﹣5)
(3)﹣1=
(4)x﹣(x﹣9)=[x+(x﹣9)]
(5) -=0.5x+2
【答案】(1)y=﹣44;(2)x=8;(3)x=;(4)x=﹣;(5)x=.
【解析】
依據(jù)解分式方程的步驟即可解答.
解:(1)去括號得:20﹣y=﹣1.5y﹣2,
移項合并得:0.5y=﹣22,
解得:y=﹣44;
(2)去分母得:x﹣5=9﹣2x+10,
移項合并得:3x=24,
解得:x=8;
(3)去分母得:3x+6﹣12=6﹣4x,
移項合并得:7x=12,
解得:x=;
(4)去括號得:x﹣x+1=x+x﹣1,
去分母得:9x﹣x+9=3x+x﹣9,
移項合并得:4x=﹣18,
解得:x=﹣;
(5)方程整理得:4x﹣2﹣=0.5x+2,
去分母得:12x﹣6﹣5x﹣15=1.5x+6,
移項合并得:5.5x=27,
解得:x=.
科目:初中數(shù)學 來源: 題型:
【題目】為了鼓勵市民節(jié)約用水,某市水費實行分段計費制,每戶每月用水量在規(guī)定用量及以下的部分收費標準相同,超出規(guī)定用量的部分收費標準相同.例如:若規(guī)定用量為10噸,每月用水量不超過10噸按1.5元/噸收費,超出10噸的部分按2元/噸收費,則某戶居民一個月用水8噸,則應繳水費:8×1.5=12(元);某戶居民一個月用水13噸,則應繳水費:10×1.5+(13﹣10)×2=21(元).
表是小明家1至4月份用水量和繳納水費情況,根據(jù)表格提供的數(shù)據(jù),回答:
月份 | 一 | 二 | 三 | 四 |
用水量(噸) | 6 | 7 | 12 | 15 |
水費(元) | 12 | 14 | 28 | 37 |
(1)該市規(guī)定用水量為 噸,規(guī)定用量內(nèi)的收費標準是 元/噸,超過部分的收費標準是 元/噸.
(2)若小明家五月份用水20噸,則應繳水費 元.
(3)若小明家六月份應繳水費46元,則六月份他們家的用水量是多少噸?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一、二、三、四這四個扇形的面積之比為1:3:5:1.
(1)請分別求出它們圓心角的度數(shù).
(2)一、二、四這三個扇形的圓心角的度數(shù)之和是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】甲口袋中裝有兩個相同的小球,它們的標號分別為2和5,乙口袋中裝有兩個相同的小球,它們的標號分別為4和9,丙口袋中裝有三個相同的小球,它們的標號分別為1,6,7.從這3個口袋中各隨機取出一個小球.
(1)用樹形圖表示所有可能出現(xiàn)的結果;
(2)若用取出的三個小球的標號分別表示三條線段的長,求這些線段能構成三角形的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】鐵路貨運調(diào)度站有A、B兩個信號燈,在燈這旁停靠著甲、乙、丙三列火車.它們中最長的車長與居中車長之差等于居中車長與最短車長之差,其中乙車的車長居中,最開始的時候,甲、丙兩車車尾對齊,且車尾正好位于A信號燈處,而車頭則沖著B信號燈的方向,乙車的車尾則位于B信號燈處,車頭則沖著A的方向,現(xiàn)在,三列火車同時出發(fā)向前行駛,3秒之后三列火車的車頭恰好相遇,再過9秒,甲車恰好超過丙車,而丙車也正好完全和乙車錯開,請問:甲乙兩車從車頭相遇直到完全錯開一共用了_____秒鐘.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖在長方形ABCD中,AB=12cm,BC=8cm,點P從A點出發(fā),沿A→B→C→D路線運動,到D點停止;點Q從D點出發(fā),沿D→C→B→A運動,到A點停止.若點P、點Q同時出發(fā),點P的速度為每秒1cm,點Q的速度為每秒2cm,用x(秒)表示運動時間.
(1)求點P和點Q相遇時的x值.
(2)連接PQ,當PQ平分矩形ABCD的面積時,求運動時間x值.
(3)若點P、點Q運動到6秒時同時改變速度,點P的速度變?yōu)槊棵?/span>3cm,點Q的速度為每秒1cm,求在整個運動過程中,點P、點Q在運動路線上相距路程為20cm時運動時間x值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,已知數(shù)軸上兩點A,B對應的數(shù)分別是﹣1,3,點P為數(shù)軸上的一動點,其對應的數(shù)為x
(1)A、B兩點的距離AB= ;
(2)在數(shù)軸上是否存在點P,使PA+PB=6?若存在,請求出x的值;若不存在,請說明理由.
(3)如圖2,若點P以每秒1個單位的速度從點O出發(fā)向右運動,同時點A以每秒5個單位的速度向左運動,點B以每秒20個單位的速度向右運動,在運動的過程中,M、N分別是AP、OB的中點,問:的值是否發(fā)生變化?請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知一次函數(shù)與反比例函數(shù)的圖象交于點A(﹣4,﹣2)和B(a,4).
(1)求反比例函數(shù)的解析式和點B的坐標;
(2)根據(jù)圖象回答,當x在什么范圍內(nèi)時,一次函數(shù)的值大于反比例函數(shù)的值?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】有三個有理數(shù)a,b,c,已知a=,(n為正整數(shù))且a與b互為相反數(shù),b與c互為倒數(shù).
(1)當n為奇數(shù)時你能求出a,b,c各是幾嗎?
(2)當n為偶數(shù)時,你能求a,b,c三數(shù)嗎?若能請算出結果,不能請說明理由.
(3)根據(jù)(1)中的結論,求:ab﹣b﹣(b﹣c)2015的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com