【題目】現(xiàn)今微信運動被越來越多的人關注和喜愛,某興趣小組隨機調查了我市50名教師某日微信運動中的步數(shù)情況進行統(tǒng)計整理,繪制了如下的統(tǒng)計圖表(不完整):

步數(shù)

頻數(shù)

頻率

0≤x4000

8

a

4000≤x8000

15

0.3

8000≤x12000

12

b

12000≤x16000

c

0.2

16000≤x20000

3

0.06

20000≤x24000

d

0.04

請根據(jù)以上信息,解答下列問題:

1)寫出a,b,c,d的值并補全頻數(shù)分布直方圖;

2)本市約有37800名教師,用調查的樣本數(shù)據(jù)估計日行走步數(shù)超過12000步(包含12000步)的教師有多少名?

3)若在50名被調查的教師中,選取日行走步數(shù)超過16000步(包含16000步的兩名教師與大家分享心得,求被選取的兩名教師恰好都在20000步(包含20000步)以上的概率.

【答案】1a=0.16,b=0.24c=10,d=2,圖見解析;(211340名;3.

【解析】試題分析:1)根據(jù)頻率=頻數(shù)÷總數(shù)可得答案;

2)用樣本中超過12000步(包含12000步)的頻率之和乘以總人數(shù)可得答案;

3)畫樹狀圖列出所有等可能結果,根據(jù)概率公式求解可得.

試題解析:解:1a=8÷50=0.16,b=12÷50=0.24,c=50×0.2=10d=50×0.04=2,補全頻數(shù)分布直方圖如下:

237800×0.2+0.06+0.04=11340

答:估計日行走步數(shù)超過12000步(包含12000步)的教師有11340名;

3)設16000≤x200003名教師分別為A、BC,20000≤x240002名教師分別為X、Y,畫樹狀圖如下:

由樹狀圖可知,被選取的兩名教師恰好都在20000步(包含20000步)以上的概率為=

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,等腰三角形ABC中,BD,CE分別是兩腰上的中線.

(1)求證:BD=CE;

(2)設BDCE相交于點O,點M,N分別為線段BOCO的中點,當ABC的重心到頂點A的距離與底邊長相等時,判斷四邊形DEMN的形狀,無需說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某商店需要購進甲、乙兩種商品共160件,其進價和售價如下表:(注:獲利=售價-進價)

1)若商店計劃銷售完這批商品后能獲利1100元,問甲、乙兩種商品應分別購進多少件?

2)若商店計劃投入資金少于4300元,且銷售完這批商品后獲利多于1260元,請問有哪幾種購貨方案?并直接寫出其中獲利最大的購貨方案。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,直線軸交于點,與軸交于點,與反比例函的圖象交于點,且

1)求點的坐標和反比例函數(shù)的解析式;

2)點軸上,反比例函數(shù)圖象上存在點,使得四邊形為平行四邊形,求M的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】二次函數(shù)a<0)圖象與x軸的交點AB的橫坐標分別為﹣3,1,與y軸交于點C,下面四個結論:

①16a﹣4b+c<0;②P(﹣5,y1),Q,y2)是函數(shù)圖象上的兩點,則y1y2;③a=﹣c;④ABC是等腰三角形,則b=﹣.其中正確的有______(請將結論正確的序號全部填上)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在國家政策的宏觀調控下,某市的商品房成交均價由今年3月份的14 000/m2下降到5月份的12 600/m2.

(1)4,5兩月平均每月降價的百分率約是多少?(參考數(shù)據(jù):≈0.95)

(2)如果房價繼續(xù)跌落,按此降價的百分率,你預測到7月份該市的商品房成交均價是否會跌跛10 000/m2?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在方格紙中,點A,B,P都在格點上.請按要求畫出以AB為邊的格點四邊形,使P在四邊形內部不包括邊界上,且P到四邊形的兩個頂點的距離相等.

1在圖甲中畫出一個ABCD.

2在圖乙中畫出一個四邊形ABCD,使D=90°,且A90°注:圖甲、乙在答題紙上

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABCD中,點EF分別在AD,BC邊上,且BEDF.

求證:(1)四邊形BFDE是平行四邊形;

(2)AE=CF.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在ABC中,∠C=90°,A=30°,DAC邊上一點,且CD=2AD=4,過點DDEAB于點E

(1)AB的長;

(2)如圖2,將ADE繞點A順時針旋轉60°,延長DEAC于點G,AB于點F,連接CF

求證:點FAB的中點.

(3)如圖3,在ADE繞點A順時針旋轉的過程中,當DE的延長線恰好經(jīng)過點B時,若點PBD的中點,連接CPPF

求證:∠PCEPEC.

查看答案和解析>>

同步練習冊答案