分析 連接OD,由DA與CO平行,利用兩直線平行內(nèi)錯(cuò)角相等、同位角相等得到兩對(duì)角相等,再由OD=OA,利用等邊對(duì)等角得到一對(duì)角相等,等量代換得到∠COB=∠COD,再由OD=OB,OC為公共邊,利用SAS得出三角形BCO與三角形DCO全等,由全等三角形對(duì)應(yīng)角相等得到一對(duì)角相等,由BC為圓的切線,利用切線的性質(zhì)得到∠CBO=90°,進(jìn)而得到∠CDO=90°,再由OD為圓的半徑,即可得到CD為圓O的切線.
解答 證明:連接OD,
∵AD∥OC,
∴∠COB=∠DAO,∠COD=∠ADO,
∵OD=OA,
∴∠DEO=∠EDO,
∴∠COB=∠COD,
在△BCO和△DCO中,
$\left\{\begin{array}{l}{OB=OD}\\{∠COB=∠COD}\\{OC=OC}\end{array}\right.$,
∴△BCO≌△DCO(SAS),
∴∠CDO=∠CBO,
∵BC為圓O的切線,
∴BC⊥OB,即∠CBO=90°,
∴∠CDO=90°,
又∵OD為圓的半徑,
∴CD為圓O的切線.
點(diǎn)評(píng) 此題考查了切線的判定與性質(zhì),以及全等三角形的判定與性質(zhì),熟練掌握切線的判定方法是解本題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com