【題目】請認真觀察圖形,解答下列問題:
(1)根據(jù)圖中條件,試用兩種不同方法表示兩個陰影圖形的面積的和.
方法1: ;
方法2: .
(2)從中你能發(fā)現(xiàn)什么結(jié)論,請用等式表示出來: ;
(3)利用(2)中結(jié)論解決下面的問題:若,,求的值.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形OABC的邊長為4,對角線相交于點P,頂點A,C分別在x軸,y軸的正半軸上,拋物線L經(jīng)過O,P,A三點,點E是正方形內(nèi)的拋物線上的動點.
(1)點P的坐標為;
(2)求拋物線L的解析式;
(3)求△OAE與△OCE面積之和的最大值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某居民小區(qū)一處圓柱形的輸水管道破裂,維修人員為更換管道,需確定管道圓形截面的半徑,下圖是水平放置的破裂管道有水部分的截面.
(1)請你補全這個輸水管道的圓形截面;
(2)若這個輸水管道有水部分的水面寬AB=16cm,水面最深地方的高度為4cm,求這個圓形截面的半徑.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,M,N分別是邊AB、BC的中點,E、F是邊AC上的三等分點,連接ME、NF且延長后交于點D,連接BE、BF
(1)求證:四邊形BFDE是平行四邊形;(2)當△ABC滿足什么條件時四邊形BFDE是菱形,證明你的結(jié)論。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】清朝康熙皇帝是我國歷史上對數(shù)學很有興趣的帝王近日,西安發(fā)現(xiàn)了他的數(shù)學專著,其中有一文《積求勾股法》,它對“三邊長為3、4、5的整數(shù)倍的直角三角形,已知面積求邊長”這一問題提出了解法:“若所設者為積數(shù)(面積),以積率六除之,平方開之得數(shù),再以勾股弦各率乘之,即得勾股弦之數(shù)”.用現(xiàn)在的數(shù)學語言表述是:“若直角三角形的三邊長分別為3、4、5的整數(shù)倍,設其面積為S,則第一步: =m;第二步: =k;第三步:分別用3、4、5乘以k,得三邊長”.
(1)當面積S等于150時,請用康熙的“積求勾股法”求出這個直角三角形的三邊長;
(2)你能證明“積求勾股法”的正確性嗎?請寫出證明過程.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC和△ADE中,邊AD與邊BC交于點P(不與點B、C重合),點B、E在AD異側(cè),OA、OC分別是∠PAC和∠PCA的角平分線.
(1)當∠APC =60°時,求∠AOC的度數(shù);
(2)當AB⊥AC,AB=AD=4,AC=3,BC=5時,設AP=x,用含x的式子表示PD,并求PD的最大值;
(3)當AB⊥AC,∠B=20°時,∠AOC的取值范圍為α°<∠AOC <β°,直接寫出α、β的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,點C(﹣3,0),點A,B分別在x軸,y軸的正半軸上,且滿足 +|OA﹣1|=0
(1)求點A,點B的坐標.
(2)若點P從C點出發(fā),以每秒1個單位的速度沿射線CB運動,連結(jié)AP.設△ABP的面積為S,點P的運動時間為t秒,求S與t的函數(shù)關系式,并寫出自變量的取值范圍.
(3)在(2)的條件下,是否存在點P,使以點A,B,P為頂點的三角形與△AOB相似?若存在,請直接寫出點P的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線PQ∥MN,點C是PQ、MN之間(不在直線PQ,MN上)的一個動點.
(1)若∠1與∠2都是銳角,如圖甲,請直接寫出∠C與∠1,∠2之間的數(shù)量關系;
(2)若把一塊三角尺(∠A=30°,∠C=90°)按如圖乙方式放置,點D,E,F是三角尺的邊與平行線的交點,若∠AEN=∠A,求∠BDF的度數(shù);
(3)將圖乙中的三角尺進行適當轉(zhuǎn)動,如圖丙,直角頂點C始終在兩條平行線之間,點G在線段CD上,連接EG,且有∠CEG=∠CEM,求值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列說法中:①0是最小的整數(shù);②有理數(shù)不是正數(shù)就是負數(shù);③非負數(shù)就是正數(shù);④不僅是有理數(shù),而且是分數(shù);⑤是無限不循環(huán)小數(shù),所以不是有理數(shù);⑥無限小數(shù)不都是有理數(shù);⑦正數(shù)中沒有最小的數(shù),負數(shù)中沒有最大的數(shù).其中錯誤的說法的個數(shù)為( )
A.7個B.6個C.5個D.4個
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com